首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mosaic Variegated Aneuploidy (MVA) syndrome is a rare autosomal recessive disorder characterized by inaccurate chromosome segregation and high rates of near-diploid aneuploidy. Children with MVA syndrome die at an early age, are cancer prone, and have progeroid features like facial dysmorphisms, short stature, and cataracts. The majority of MVA cases are linked to mutations in BUBR1, a mitotic checkpoint gene required for proper chromosome segregation. Affected patients either have bi-allelic BUBR1 mutations, with one allele harboring a missense mutation and the other a nonsense mutation, or mono-allelic BUBR1 mutations combined with allelic variants that yield low amounts of wild-type BubR1 protein. Parents of MVA patients that carry single allele mutations have mild mitotic defects, but whether they are at risk for any of the pathologies associated with MVA syndrome is unknown. To address this, we engineered a mouse model for the nonsense mutation 2211insGTTA (referred to as GTTA) found in MVA patients with bi-allelic BUBR1 mutations. Here we report that both the median and maximum lifespans of the resulting BubR1 +/GTTA mice are significantly reduced. Furthermore, BubR1 +/GTTA mice develop several aging-related phenotypes at an accelerated rate, including cataract formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. BubR1 +/GTTA mice develop mild aneuploidies and show enhanced growth of carcinogen-induced tumors. Collectively, these data demonstrate that the BUBR1 GTTA mutation compromises longevity and healthspan, raising the interesting possibility that mono-allelic changes in BUBR1 might contribute to differences in aging rates in the general population.  相似文献   

2.
Background information. The role of the LIM‐domain‐containing protein Ajuba was initially described in cell adhesion and migration processes and recently in mitosis as an activator of the Aurora A kinase. Results. In the present study, we show that Ajuba localizes to centrosomes and kinetochores during mitosis. This localization is microtubule‐dependent and Ajuba binds microtubules in vitro. A microtubule regrowth assay showed that Ajuba follows nascent microtubules from centrosomes to kinetochores. Owing to its contribution to mitotic commitment and its microtubule‐dependent localization, Ajuba could also play a role during the metaphase—anaphase transition. We show that Ajuba interacts with Aurora B and BUBR1 [BUB (budding uninhibited by benomyl)‐related 1], two major components of the mitotic checkpoint. Inhibition of BUBR1 by siRNA (small interfering RNA) disrupts chromosome alignment at the metaphase plate and modifies Ajuba localization due to premature mitotic exit. Conclusions. Ajuba is a microtubule‐associated protein that collaborates with Aurora B and BUBR1 at the metaphase—anaphase transition and this may be important to ensure proper chromosome segregation.  相似文献   

3.

Background

In eukaryotes, the spindle assembly checkpoint (SAC) ensures that chromosomes undergoing mitosis do not segregate until they are properly attached to the microtubules of the spindle.

Methodology/Principal Findings

We investigated the mechanism underlying this surveillance mechanism in plants, by characterising the orthogolous SAC proteins BUBR1, BUB3 and MAD2 from Arabidopsis. We showed that the cell cycle-regulated BUBR1, BUB3.1 and MAD2 proteins interacted physically with each other. Furthermore, BUBR1 and MAD2 interacted specifically at chromocenters. Following SAC activation by global defects in spindle assembly, these three interacting partners localised to unattached kinetochores. In addition, in cases of ‘wait anaphase’, plant SAC proteins were associated with both kinetochores and kinetochore microtubules. Unexpectedly, BUB3.1 was also found in the phragmoplast midline during the final step of cell division in plants.

Conclusions/Significance

We conclude that plant BUBR1, BUB3.1 and MAD2 proteins may have the SAC protein functions conserved from yeast to humans. The association of BUB3.1 with both unattached kinetochore and phragmoplast suggests that in plant, BUB3.1 may have other roles beyond the spindle assembly checkpoint itself. Finally, this study of the SAC dynamics pinpoints uncharacterised roles of this surveillance mechanism in plant cell division.  相似文献   

4.
Skin fibroblast cells from two unrelated male infants with a chromosome-instability disorder were analyzed for their response to colcemid-induced mitotic-spindle checkpoint. The infants both had severe growth and developmental retardation, microcephaly, and Dandy-Walker anomaly; developed Wilms tumor; and one died at age 5 mo, the other at age 3 years. Their metaphases had total premature chromatid separation (total PCS) and mosaic variegated aneuploidy. Mitotic-index analysis of their cells showed the absence of mitotic block after the treatment with colcemid, a mitotic-spindle inhibitor. Bromodeoxyuridine-incorporation measurement and microscopic analysis indicated that cells treated with colcemid entered G1 and S phases without sister-chromatid segregation and cytokinesis. Preparations of short-term colcemid-treated cells contained those cells with chromosomes in total PCS and all or clusters of them encapsulated by nuclear membranes. Cell-cycle studies demonstrated the accumulation of cells with a DNA content of 8C. These findings indicate that the infants' cells were insensitive to the colcemid-induced mitotic-spindle checkpoint.  相似文献   

5.
Corrigendum     
FBW7 (F-box and WD repeat domain containing 7), also known as FBXW7 or hCDC4, is a tumor suppressor gene mutated in a broad spectrum of cancer cell types. As a component of the SCF E3 ubiquitin ligase, FBW7 is responsible for specifically recognizing phosphorylated substrates, many important for tumor progression, and targeting them for ubiquitin-mediated degradation. Although the role of FBW7 as a tumor suppressor is well established, less well studied is how FBW7-mutated cancer cells might be targeted for selective killing. To explore this further, we undertook a genome-wide RNAi screen using WT and FBW7 knockout colorectal cell lines and identified the spindle assembly checkpoint (SAC) protein BUBR1, as a candidate synthetic lethal target. We show here that asynchronous FBW7 knockout cells have increased levels of mitotic APC/C substrates and are sensitive to knockdown of not just BUBR1 but BUB1 and MPS1, other known SAC components, suggesting a dependence of these cells on the mitotic checkpoint. Consistent with this dependence, knockdown of BUBR1 in cells lacking FBW7 results in significant cell aneuploidy and increases in p53 levels. The FBW7 substrate cyclin E was necessary for the genetic interaction with BUBR1. In contrast, the establishment of this dependence on the SAC requires the deregulation of multiple substrates of FBW7. Our work suggests that FBW7 knockout cells are vulnerable in their dependence on the mitotic checkpoint and that this may be a good potential target to exploit in FBW7-mutated cancer cells.  相似文献   

6.
7.
The multidomain protein kinases BUB1 and BUBR1 (Mad3 in yeast, worms and plants) are central components of the mitotic checkpoint for spindle assembly (SAC). This evolutionarily conserved and essential self-monitoring system of the eukaryotic cell cycle ensures the high fidelity of chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bi-oriented on the mitotic spindle. Despite their amino acid sequence conservation and similar domain organization, BUB1 and BUBR1 perform different functions in the SAC. Recent structural information provides crucial molecular insights into the regulation and recognition of BUB1 and BUBR1, and a solid foundation to dissect the roles of these proteins in the control of chromosome segregation in normal and oncogenic cells.  相似文献   

8.
Eukaryotic cells have evolved a mechanism that delays the progression of mitosis until condensed chromosomes are properly positioned on the mitotic spindle. To understand the molecular basis of such monitoring mechanism in human cells, we have been studying genes that regulate the mitotic checkpoint. Our early studies have led to the cloning of a full-length cDNA encoding MAD3-like protein (also termed BUBR1/MAD3/SSK1). Dot blot analyses show that BUBR1 mRNA is expressed in tissues with a high mitotic index but not in differentiated tissues. Western blot analyses show that in asynchronous cells, BUBR1 protein primarily exhibits a molecular mass of 120 kDa, and its expression is detected in most cell lines examined. In addition, BUBR1 is present during various stages of the cell cycle. As cells enter later S and G2, BUBR1 levels are increased significantly. Nocodazole-arrested mitotic cells obtained by mechanical shake-off contain BUBR1 antigen with a slower mobility on denaturing SDS gels. Phosphatase treatment restores the slowly migrating band to the interphase state, indicating that the slow mobility of the BUBR1 antigen is attributable to phosphorylation. Furthermore, purified recombinant His6-BUBR1 is capable of autophosphorylation. Our studies indicate that BUBR1 phosphorylation status is regulated during spindle disruption. Considering its strong homology to BUB1 protein kinase, BUBR1 may also play an important role in mitotic checkpoint control by phosphorylation of a critical cellular component(s) of the mitotic checkpoint pathway.  相似文献   

9.
10.
在有丝分裂过程中BUBR1监视微管与着丝点的结合,是保证染色体均等分离的重要分子机制之一.BUBIB变异家谱研究及其敲除模型的研究表明,BUBR1缺陷与染色体不稳定性及肿瘤的发生直接相关.近来在数种人类肿瘤,对BUBR1蛋白过度表达有所报道.但在直结肠癌,BUBR1的过度表达是否与染色体不稳定性的发生有关目前仍无定论.在人类结直肠癌的遗传不稳定性主要表现为两种类型,染色体不稳定性及微卫星不稳定性,它们提示了两条独立的肿瘤发生路径.一般认为不存在高频度微卫星不稳定性表型的肿瘤通过染色体不稳定途径癌变.P53蛋白通过多种机制对维护遗传稳定性起到重要的作用,TP53基因突变经常与染色体不稳定现象并存.DNA倍体情况也是染色体不稳定研究不可缺少的指标.本研究采用免疫组织化学法检测了一组93例进展期散发结直肠癌BUBR1蛋白的表达情况,直接测序法检测TP53变异.高分辨率荧光标记微卫星不稳定检测技术检测微卫星状态,固相激光扫描细胞仪技术检测DNA倍体情况.我们分析了BUBR1表达与三种反映遗传背景的因子的关系.BUBR1蛋白过度表达在人结直肠癌较为常见.在非高频度微卫星不稳定的结直肠癌,BUBR1蛋白过度表达率明显为高(P<0.01),在TP53基因突变的病例其过度表达率亦较高(P<0.05).BUBR1蛋白的过度表达与DNA异倍体无统计学相关,但DNA异倍体病例的BuBRl过度表达有偏高倾向.BuBRl表达情况与常用的临床病理学指标无统计学相关.BuBRl过度表达同微卫星状态及TP53突变的关系明确的提示,在人类散发结直肠癌,BUBR1蛋白过度表达与染色体不稳定状态有关.BUBR1过度表达作为一种常见的分子异常,对于肿瘤的早诊预防提供新的标志物.并可能成为治疗的新靶点.  相似文献   

11.
Anaphase onset and mitotic exit are regulated by the spindle assembly or kinetochore checkpoint, which inhibits the anaphase-promoting complex (APC), preventing the degradation of anaphase inhibitors and mitotic cyclins. As a result, cells arrest with high cyclin-dependent kinase (CDK) activity due to the accumulation of cyclins. Aside from this, a clear-cut demonstration of a direct role for CDKs in the spindle checkpoint response has been elusive. Cdc28 is the main CDK driving the cell cycle in budding yeast. In this report, mutations in cdc28 are described that confer specific checkpoint defects, supersensitivity towards microtubule poisons and chromosome loss. Two alleles encode single mutations in the N and C terminal regions, respectively (R10G and R288G), and one allele specifies two mutations near the C terminus (F245L, I284T). These cdc28 mutants are unable to arrest or efficiently prevent sister chromatid separation during treatment with nocodazole. Genetic interactions with checkpoint and apc mutants suggest Cdc28 may regulate checkpoint arrest downstream of the MAD2 and BUB2 pathways. These studies identify a C-terminal domain of Cdc28 required for checkpoint arrest upon spindle damage that mediates chromosome stability during vegetative growth, suggesting that it has an essential surveillance function in the unperturbed cell cycle.Communicated by A. Aguilera  相似文献   

12.
Genetic cancer predisposition syndromes have been crucial to the identification of genes and pathways involved in carcinogenesis. Constitutional gene mutations segregating with distinctive cancer phenotypes provide unequivocal evidence of a gene’s causal role in cancer. This type of evidence has been central in proving that oncogenes and tumor suppressor genes can cause human cancers, but has been lacking for genes implicated in generating aneuploidy. However, recently we identified mutations in the mitotic checkpoint gene BUB1B in an autosomal recessive condition characterised by mosaic aneuploidies and childhood cancers. This finding strongly suggests that aneuploidy is causally related to cancer development.  相似文献   

13.
In spite of the impact of aneuploidy on human health little is known concerning the molecular mechanisms involved in the formation of structural or numerical chromosome abnormalities during meiosis. Here, we provide novel evidence indicating that lack of PARP-1 function during oogenesis predisposes the female gamete to genome instability. During prophase I of meiosis, a high proportion of Parp-1(−/−) mouse oocytes exhibit a spectrum of meiotic defects including incomplete homologous chromosome synapsis or persistent histone H2AX phosphorylation in fully synapsed chromosomes at the late pachytene stage. Moreover, the X chromosome bivalent is also prone to exhibit persistent double strand DNA breaks (DSBs). In striking contrast, such defects were not detected in mutant pachytene spermatocytes. In fully-grown wild type oocytes at the germinal vesicle stage, PARP-1 protein associates with nuclear speckles and upon meiotic resumption, undergoes a striking re-localization towards spindle poles as well as pericentric heterochromatin domains at the metaphase II stage. Notably, a high proportion of in vivo matured Parp-1(−/−) oocytes show lack of recruitment of the kinetochore-associated protein BUB3 to centromeric domains and fail to maintain metaphase II arrest. Defects in chromatin modifications in the form of persistent histone H2AX phosphorylation during prophase I of meiosis and deficient sister chromatid cohesion during metaphase II predispose mutant oocytes to premature anaphase II onset upon removal from the oviductal environment. Our results indicate that PARP-1 plays a critical role in the maintenance of chromosome stability at key stages of meiosis in the female germ line. Moreover, in the metaphase II stage oocyte PARP-1 is required for the regulation of centromere structure and function through a mechanism that involves the recruitment of BUB3 protein to centromeric domains.  相似文献   

14.
Chromosomal stability is safeguarded by a mitotic checkpoint, of which BUB1 and Mad3/BUBR1 are core components. These paralogs have similar, but not identical, domain organization. We show that Mad3/BUBR1 and BUB1 paralogous pairs arose by nine independent gene duplications throughout evolution, followed by parallel subfunctionalization in which preservation of the ancestral, amino-terminal KEN box or kinase domain was mutually exclusive. In one exception, vertebrate BUBR1-defined by the KEN box-preserved the kinase domain but allowed nonconserved degeneration of catalytic motifs. Although BUBR1 evolved to a typical pseudokinase in some vertebrates, it retained the catalytic triad in humans. However, we show that putative catalysis by human BUBR1 is dispensable for error-free chromosome segregation. Instead, residues that interact with ATP in conventional kinases are essential for conformational stability in BUBR1. We propose that parallel evolution of BUBR1 orthologs rendered its kinase function dispensable in vertebrates, producing an unusual, triad-containing pseudokinase.  相似文献   

15.
Somatic mutations of the cohesin complex subunit STAG2 are present in diverse tumor types. We and others have shown that STAG2 inactivation can lead to loss of sister chromatid cohesion and alterations in chromosome copy number in experimental systems. However, studies of naturally occurring human tumors have demonstrated little, if any, correlation between STAG2 mutational status and aneuploidy, and have further shown that STAG2-deficient tumors are often euploid. In an effort to provide insight into these discrepancies, here we analyze the effect of tumor-derived STAG2 mutations on the protein composition of cohesin and the expected mitotic phenotypes of STAG2 mutation. We find that many mutant STAG2 proteins retain their ability to interact with cohesin; however, the presence of mutant STAG2 resulted in a reduction in the ability of regulatory subunits WAPL, PDS5A, and PDS5B to interact with the core cohesin ring. Using AAV-mediated gene targeting, we then introduced nine tumor-derived mutations into the endogenous allele of STAG2 in cultured human cells. While all nonsense mutations led to defects in sister chromatid cohesion and a subset induced anaphase defects, missense mutations behaved like wild-type in these assays. Furthermore, only one of nine tumor-derived mutations tested induced overt alterations in chromosome counts. These data indicate that not all tumor-derived STAG2 mutations confer defects in cohesion, chromosome segregation, and ploidy, suggesting that there are likely to be other functional effects of STAG2 inactivation in human cancer cells that are relevant to cancer pathogenesis.  相似文献   

16.
Saccharomyces cerevisiae BUB1 encodes a protein kinase required for spindle assembly checkpoint function. In the presence of spindle damage, BUB1 is required to prevent cell cycle progression into anaphase. We have identified a dominantly acting BUB1 allele that appears to activate the spindle assembly checkpoint pathway in cells with undamaged spindles. High-level expression of BUB1-5 did not cause detectable spindle damage, yet it delayed yeast cells in mitosis at a stage following bipolar spindle assembly but prior to anaphase spindle elongation. Delayed cells possessed a G2 DNA content and elevated Clb2p mitotic cyclin levels. Unlike cells delayed in mitosis by spindle damage or MPS1 kinase overexpression, hyperphosphorylated forms of the Mad1p checkpoint protein did not accumulate. Similar to cells overexpressing MPS1, the BUB1-5 delay was dependent upon the functions of the other checkpoint genes, including BUB2 and BUB3 and MAD1, MAD2, and MAD3. We found that the mitotic delay caused by BUB1-5 or MPS1 overexpression was interdependent upon the function of the other. This suggests that the Bub1p and Mps1p kinases act together at an early step in generating the spindle damage signal.  相似文献   

17.
A 13-month-old boy with normal development and growth failure of prenatal onset but no other physical stigmata had a 46,XY,r(4)(p1 6.3q35).ish (4psubtel-, WHS1+, 4qsubtel+, pantel-) de novo karyotype. The analysis of 50-106 metaphases from each of four lymphocyte cultures (three of 72 h including one without colchicine and one of 96 h) revealed a dynamic mosaicism in 22-36% of cells. We did not observe a normal cell line. Hypoploidies (excluding ring losses) were observed in 2-7% of metaphases from colchicine-arrested cultures whereas tetraploidies were observed in 2-12% of metaphases from all four lymphocyte cultures. Further FISH studies were carried out on interphase nuclei from uncultured buccal cells and lymphocytes using two alphoid (CEP 1 and 9), a dual CEP X/SRY, and (in the former only) a subtel 4p probes. We scored 70-131 nuclei per assay and found apparent heteroploidies in approximately 1-47% of cells for CEP 1, CEP 9, subtel 4p, and SRY but not for CEP X. The patient's phenotype was typical of the ring syndrome and comparable to 9/37 previous r(4) cases. Moreover, all 38 patients were alive at the time of reporting and none has developed cancer. The 2-7% rate of hypodiploid cells in colchicine-arrested cultures and the approximately 1-47% rate of apparent heteroploidies in nuclei of uncultured cells evoke the in vitro and in vivo findings in patients with mosaic variegated aneuploidy (MVA). We conclude that our observation highlights the clinical and cytogenetical overlapping between the ring syndrome and the MVA syndrome; the crucial difference is the high risk of cancer related to BUB1B mutations in the latter.  相似文献   

18.
Many hybrid zones have a mosaic structure, yet we know of no theoretical work that examines the impact of mosaicism on the outcome of evolution. We developed a computer simulation model designed to test whether the outcome of reinforcing selection differs in a mosaic and a clinal hybrid zone. Our model was a one-dimensional stepping-stone model. The mosaic and clinal hybrid zones that we modeled were, respectively, a mosaic maintained by differential fitness of the interacting taxa in patchy habitats and a tension zone. We modeled changes in gene frequency at two biallelic loci, A and B. Hybrids at the A locus were selected against. An allele at the B locus caused assortative mating at the A locus, which promoted reinforcement; there was a selective cost to this allele. In a mosaic hybrid zone, spatial variation in the fitness of A-locus homozygotes in different patches caused gene and genotype frequencies at the A and B loci to differ greatly from those in a tension zone. Compared to a tension zone, a mosaic hybrid zone had a broader region in which hybrids could be formed and, thus, a broader region in which the assortative-mating allele provided a net selective advantage (via decreased production of the less fit A-locus hybrids). This caused the assortative-mating allele to be favored under a broader set of conditions in a mosaic hybrid zone than in a tension zone. In mosaic and tension hybrid zones, both low and high levels of migration could prevent the establishment of the allele that promoted reinforcement, but the allele could establish under a wider range of migration rates in a mosaic than in a tension zone. In a tension zone, both low and high levels of selection against A-locus hybrids could prevent the establishment of the assortative-mating allele. In a mosaic hybrid zone, the assortative-mating allele established under lower levels of selection against hybrids than in a tension zone, and high levels of selection did not impede the establishment of this allele. Overall, our work illustrates how the structure of a hybrid zone can alter the outcome of an important evolutionary process, in this case, reinforcement.  相似文献   

19.
In meiosis, chromosome cohesion is maintained by the cohesin complex, which is released in a two‐step manner. At meiosis I, the meiosis‐specific cohesin subunit Rec8 is cleaved by the protease Separase along chromosome arms, allowing homologous chromosome segregation. Next, in meiosis II, cleavage of the remaining centromere cohesin results in separation of the sister chromatids. In eukaryotes, protection of centromeric cohesion in meiosis I is mediated by SHUGOSHINs (SGOs). The Arabidopsis genome contains two SGO homologs. Here we demonstrate that Atsgo1 mutants show a premature loss of cohesion of sister chromatid centromeres at anaphase I and that AtSGO2 partially rescues this loss of cohesion. In addition to SGOs, we characterize PATRONUS which is specifically required for the maintenance of cohesion of sister chromatid centromeres in meiosis II. In contrast to the Atsgo1 Atsgo2 double mutant, patronus T‐DNA insertion mutants only display loss of sister chromatid cohesion after meiosis I, and additionally show disorganized spindles, resulting in defects in chromosome segregation in meiosis. This leads to reduced fertility and aneuploid offspring. Furthermore, we detect aneuploidy in sporophytic tissue, indicating a role for PATRONUS in chromosome segregation in somatic cells. Thus, ploidy stability is preserved in Arabidopsis by PATRONUS during both meiosis and mitosis.  相似文献   

20.
The mitotic checkpoint is a specialized signal transduction pathway that monitors kinetochore-microtubule attachment to achieve faithful chromosome segregation. MAD2 is an evolutionarily conserved mitotic checkpoint protein that exists in open (O) and closed (C) conformations. The increase of intracellular C-MAD2 level during mitosis, through O→C-MAD2 conversion as catalyzed by unattached kinetochores, is a critical signaling event for the mitotic checkpoint. However, it remains controversial whether MAD2 is an integral component of the effector of the mitotic checkpoint—the mitotic checkpoint complex (MCC). We show here that endogenous human MCC is assembled by first forming a BUBR1:BUB3:CDC20 complex in G2 and then selectively incorporating C-MAD2 during mitosis. Nevertheless, MCC can be induced to form in G1/S cells by expressing a C-conformation locked MAD2 mutant, indicating intracellular level of C-MAD2 as a major limiting factor for MCC assembly. In addition, a recombinant MCC containing C-MAD2 exhibits effective inhibitory activity toward APC/C isolated from mitotic HeLa cells, while a recombinant BUBR1:BUB3:CDC20 ternary complex is ineffective at comparable concentrations despite association with APC/C. These results help establish a direct connection between a major signal transducer (C-MAD2) and the potent effector (MCC) of the mitotic checkpoint, and provide novel insights into protein-protein interactions during assembly of a functional MCC.Key words: MAD2, conformer, mitotic checkpoint complex, anaphase promoting complex/cyclosome  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号