首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Notch1 plays a critical role in regulating T lineage commitment during the differentiation of lymphoid precursors. The physiological relevance of Notch1 signaling during subsequent stages of T cell differentiation has been more controversial. This is due in part to conflicting data from studies examining the overexpression or targeted deletion of Notch1 and to difficulties in distinguishing between the activities of multiple Notch family members and their ligands, which are expressed in the thymus. We employed a polyclonal antiserum against the extracellular domain of Notch1 to study surface expression during thymopoiesis. We found high levels of Notch1 on the cell surface only on double negative (DN) stage 2 through the immature single-positive stage of thymocyte development, before the double-positive (DP) stage. The Notch signaling pathway, as read out by Deltex1 expression levels, is highly active in DN thymocytes. When an active Notch1 transgene, Notch1IC, is exogenously introduced into thymocytes of recombinase-activating gene 2-deficient mice, it promotes proliferation and development to the DP stage following anti-CD3 treatment without apparently affecting the intensity of pre-TCR signaling. In addition, a stromal cell line expressing the Notch ligand, Delta-like-1, promotes the in vitro expansion of wild-type DN3 thymocytes in vitro. Consistent with other recent reports, these data suggest a role for Notch1 during the DN to DP stage of thymocyte maturation and suggest a cellular mechanism by which Notch1IC oncogenes could contribute to thymoma development and maintenance.  相似文献   

3.
4.
5.
Deltex1, Deltex2, and Deltex4 form a family of related proteins that are the mammalian homologues of Drosophila Deltex, a known regulator of Notch signals. Deltex1 is highly induced by Notch signaling in thymocytes, and overexpression of Deltex1 in T-cell progenitors can block Notch signals, suggesting that Deltex1 may play an important role in regulating Notch signals during T-cell development. A recent report found that T cells develop normally in mice carrying a targeted deletion in the Deltex1 gene (S. Storck, F. Delbos, N. Stadler, C. Thirion-Delalande, F. Bernex, C. Verthuy, P. Ferrier, J. C. Weill, and C. A. Reynaud, Mol. Cell. Biol. 25: 1437-1445, 2005), suggesting that other Deltex homologues may compensate in Deltex1-deficient T cells. We generated mice that lack expression of both Deltex1 and Deltex2 by gene targeting and further reduced expression of Deltex4 in Deltex1/Deltex2 double-deficient T-cell progenitors using RNA interference. Using a sensitive in vitro assay, we found that Notch signaling is more potent in cells expressing lower levels of Deltex proteins. Nevertheless, we were unable to detect any significant defects in thymocyte maturation in Deltex1/Deltex2 double-knockout mice. Together these data suggest that Deltex can act as a negative regulator of Notch signals in T cells but that endogenous levels of Deltex1 and Deltex2 are not important for regulating Notch signals during thymocyte development.  相似文献   

6.
7.
The major function of the thymus is to eliminate developing thymocytes that are potentially useless or autoreactive, and select only those that bear functional T cell antigen receptors (TCRs) through fastidious screening. It is believed that glucocorticoids (GCs) are at least in part responsible for cell death during death by neglect. In this review, we will mainly cover the topic of the GC-induced apoptosis of developing thymocytes. We will also discuss how thymocytes that are fated to die by GCs can be rescued from GC-induced apoptosis in response to a variety of signals with antagonizing properties for GC receptor (GR) signaling. Currently, a lot of evidence supports the notion that the decision is made as a result of the integration of the multiple signal transduction networks that are triggered by GR, TCR, and Notch. A few candidate molecules at the converging point of these multiple signaling pathyways will be discussed. We will particularly describe the role of the SRG3 protein as a potent modulator of GC-induced apoptosis in the crosstalk.  相似文献   

8.
Immature double-positive thymocytes are sensitive to glucocorticoid (GC)-induced apoptosis, whereas mature single-positive T cells are relatively resistant. Thymocytes seem to acquire resistance to GCs during differentiation into mature single-positive thymocytes. However, detailed knowledge concerning what determines the sensitivity of thymocytes to GCs and how GC sensitivity is regulated in thymocytes during development is lacking. We have previously reported that the murine SRG3 gene (for SWI3-related gene) is required for GC-induced apoptosis in a thymoma cell line. Herein, we provide results suggesting that the expression level of SRG3 protein determines the GC sensitivity of T cells in mice. SRG3 associates with the GC receptor in the thymus, but rarely in the periphery. Transgenic overexpression of the SRG3 protein in peripheral T cells induces the formation of the complex and renders the cells sensitive to GC-induced apoptosis. Our results also show that blocking the formation of the SRG3-GC receptor complex with a dominant negative mutant form of SRG3 decreases GC sensitivity in thymoma cells. In addition, mice overexpressing the SRG3 protein appear to be much more susceptible to stress-induced deletion of peripheral T cells than normal mice, which may result in an immunosuppressive state in an animal.  相似文献   

9.
10.
11.
We previously found that provirus insertion in T cell tumors of mouse mammary tumor virus/c-myc transgenic (Tg) mice induced two forms of Notch1 mutations. Type I mutations generated two truncated molecules, one intracellular (IC) (Notch1(IC)) and one extracellular (Notch1(EC)), while in type II mutations Notch1 was deleted of its C terminus (Notch1(DeltaCT)). We expressed these mutants in Tg mice using the CD4 promoter. Both Notch1(IC) and Notch1(DeltaCT), but not Notch1(EC), Tg mice developed double-positive (DP) thymomas. These disseminated more frequently in Notch1(DeltaCT) Tg mice. Double (Notch1(IC) x myc) or (Notch1(DeltaCT) x myc) Tg mice developed thymoma with a much shorter latency than single Tg mice, providing genetic evidence of a collaboration between these two oncogenes. FACS analysis of preleukemic thymocytes did not reveal major T cell differentiation anomalies, except for a higher number of DP cells and an accumulation of TCR(high)CD2(high)CD25(high) DP cells in Notch1(IC), and less so in Notch1(DeltaCT) Tg mice. This was associated with enhanced in vivo thymocyte proliferation. However, Notch1(IC), but not Notch1(DeltaCT), DP thymocytes were protected against apoptosis induced in vivo by dexamethasone and anti-CD3 and in vitro by anti-CD3/CD28 Abs. This indicates that the C terminus of Notch1 and/or the conserved regulation by its ligands have a significant impact on the induced T cell phenotype. Therefore, Notch1(IC) and Notch1(DeltaCT) behave as oncogenes for T cells. Because these two Notch1 mutations are very similar to those described in some forms of human T cell leukemia, these Tg mice may represent relevant models of these human leukemias.  相似文献   

12.
BMP2/4 signaling is required for embryogenesis and involved in thymus morphogenesis and T-lineage differentiation. In vitro experiments have shown that treatment of thymus explants with exogenous BMP4 negatively regulated differentiation of early thymocyte progenitors and the transition from CD4−CD8− (DN) to CD4+CD8+ (DP). Here we show that in vivo BMP2/4 signaling is required for fetal thymocyte progenitor homeostasis and expansion, but negatively regulates differentiation from DN to DP cell. Unexpectedly, conditional deletion of BMPRIA from fetal thymocytes (using the Cre-loxP system and directing excision to hematopoietic lineage cells with the Vav promoter) demonstrated that physiological levels of BMP2/4 signaling directly to thymocytes through BMPRIA are required for normal differentiation and expansion of early fetal DN thymocytes. In contrast, the arrest in early thymocyte progenitor differentiation caused by exogenous BMP4 treatment of thymus explants is induced in part by direct signaling to thymocytes through BMPRIA, and in part by indirect signaling through non-hematopoietic cells. Analysis of the transition from fetal DN to DP cell, both by ex vivo analysis of conditional BMPRIA-deficient thymocytes and by treatment of thymus explants with the BMP4-inhibitor Noggin demonstrated that BMP2/4 signaling is a negative regulator at this stage. We showed that at this stage of fetal T-cell development BMP2/4 signals directly to thymocytes through BMPRIA.  相似文献   

13.
Glucocorticoid (GC) hormones cause pronounced T cell apoptosis, particularly in immature thymic T cells. This is possibly due to tissue-specific regulation of the glucocorticoid receptor (GR) gene. In mice the GR gene is transcribed from five separate promoters designated: 1A, 1B, 1C, 1D, and 1E. Nearly all cells express GR from promoters 1B-1E, but the activity of the 1A promoter has only been reported in the whole thymus or lymphocyte cell lines. To directly assess the role of GR promoter use in sensitivity to glucocorticoid-induced cell death, we have compared the activity of the GR 1A promoter with GC sensitivity in different mouse lymphocyte populations. We report that GR 1A promoter activity is restricted to thymocyte and peripheral lymphocyte populations and the cortex of the brain. The relative level of expression of the 1A promoter to the 1B-1E promoters within a lymphocyte population was found to directly correlate with susceptibility to GC-induced cell death, with the extremely GC-sensitive CD4+CD8+ thymocytes having the highest levels of GR 1A promoter activity, and the relatively GC-resistant alphabetaTCR+CD24(int/low) thymocytes and peripheral T cells having the lowest levels. DNA sequencing of the mouse GR 1A promoter revealed a putative glucocorticoid-response element. Furthermore, GR 1A promoter use and GR protein levels were increased by GC treatment in thymocytes, but not in splenocytes. These data suggest that tissue-specific differences in GR promoter use determine T cell sensitivity to glucocorticoid-induced cell death.  相似文献   

14.
Immature double-positive (DP) thymocytes mature into CD4(+)CD8(-) cells in response to coengagement of TCR with any of a variety of cell surface "coinducer" receptors, including CD2. In contrast, DP thymocytes are signaled to undergo apoptosis by coengagement of TCR with CD28 costimulatory receptors, but the molecular basis for DP thymocyte apoptosis by TCR plus CD28 coengagement is not known. In the present study, we report that TCR plus CD28 coengagement does not invariably induce DP thymocyte apoptosis but, depending on the intensity of CD28 costimulation, can induce DP thymocyte maturation. We demonstrate that distinct but interacting signal transduction pathways mediate DP thymocyte maturation signals and DP thymocyte apoptotic signals. Specifically, DP maturation signals are transduced by the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and up-regulate expression of the antiapoptotic protein Bcl-2. In contrast, the apoptotic response stimulated by CD28 costimulatory signals is mediated by ERK/MAPK-independent pathways. Importantly, when TCR-activated thymocytes are simultaneously coengaged by both CD28 and CD2 receptors, CD28 signals can inhibit ERK/MAPK-dependent Bcl-2 protein up-regulation. Thus, there is cross-talk between the signal transduction pathways that transduce apoptotic and maturation responses, enabling CD28-initiated signal transduction pathways to both stimulate DP thymocyte apoptosis and also negatively regulate maturation responses initiated by TCR plus CD2 coengagement.  相似文献   

15.
16.
Both Ikaros and Notch are essential for normal T cell development. Collaborative mutations causing a reduction in Ikaros activity and an increase in Notch activation promote T cell leukemogenesis. Although the molecular mechanisms of this cooperation have been studied, its consequences in thymocyte development remain unexplored. In this study, we show that Ikaros regulates expression of a subset of Notch target genes, including Hes1, Deltex1, pTa, Gata3, and Runx1, in both Ikaros null T cell leukemia lines and Ikaros null primary thymocytes. In Ikaros null leukemia cells, Notch deregulation occurs at both the level of Notch receptor cleavage and expression of Notch target genes, because re-expression of Ikaros in these cells down-regulates Notch target gene expression without affecting levels of intracellular cleaved Notch. In addition, abnormal expression of Notch target genes is observed in Ikaros null double-positive thymocytes, in the absence of detectable intracellular cleaved Notch. Finally, we show that this role of Ikaros is specific to double-positive and single-positive thymocytes because derepression of Notch target gene expression is not observed in Ikaros null double-negative thymocytes or lineage-depleted bone marrow. Thus, in this study, we provide evidence that Ikaros and Notch play opposing roles in regulation of a subset of Notch target genes and that this role is restricted to developing thymocytes where Ikaros is required to appropriately regulate the Notch program as they progress through T cell development.  相似文献   

17.
Apoptosis eliminates inappropriate or autoreactive T lymphocytes during thymic development. Intracellular mediators involved in T-cell receptor (TCR)-mediated apoptosis in developing thymocytes during negative selection are therefore of great interest. Caspases, cysteine proteases that mediate mature T-cell apoptosis, have been implicated in thymocyte cell death, but their regulation is not understood. We examined caspase activities in distinct thymocyte subpopulations that represent different stages of T-cell development. We found caspase activity in CD4+CD8+ double positive (DP) thymocytes, where selection involving apoptosis occurs. Earlier and later thymocyte stages exhibited no caspase activity. Only certain caspases, such as caspase-3 and caspase-8-like proteases, but not caspase-1, are active in DP thymocytes in vivo and can be activated when DP thymocytes are induced to undergo apoptosis in vitro by TCR-crosslinking. Thus, specific caspases appear to be developmentally regulated in thymocytes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号