首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Hilliker AJ 《Genetics》1978,90(1):85-91
The synthesis of ring chromosomes consisting entirely of Drosophila autosomal heterochromatin is described. Our ability to obtain these heterochromatic ring chromosomes from irradiated oocytes is a logical prediction of and constitutes, therefore, a further proof for the translocation model of the origin of compound chromosomes. Additionally, the synthesis of these chromosomes provides us with potentially useful probes for the analysis of the function(s) of Drosophila heterochromatin.  相似文献   

3.
4.
5.
Stephen H. Bryant 《Genetics》1976,84(4):777-786
Second-chromosome lethals were extracted from four populations of Drosophila pseudoobscura in Southern California. Two of the populations were from desert oases and two from the classic habitat on Mt. San Jacinto, previously studied by Dobzhansky. Allelism tests were made on the lethals within and between all locations. The frequency of lethal second-chromosomes in each location was 0.18, and this was not different from the results of other workers for samples throughout the species range. Interpopulational allelism rates were about 0.005, and not different from earlier results of Dobzhansky. Intrapopulational rates in this study were, with one exception, the same as the interpopulational rates, and significantly lower than Dobzhansky found using the third chromosome. This may be due to lethals being linked with heterotic third-chromosome inversions. The allelism rate of the exceptional population (about 0.03 and equal to Dobzhansky''s intrapopulational results) may be due to heterotic lethals, or a founder effect. Two lethals were found in three populations each, possibly due to migration among these populations, which are up to 334 km apart.  相似文献   

6.
7.
Polyploidy in DROSOPHILA MELANOGASTER with Two Attached X Chromosomes   总被引:4,自引:0,他引:4  
Morgan LV 《Genetics》1925,10(2):148-178
  相似文献   

8.
9.
10.
11.
Two large experiments were conducted in order to evaluate the heterozygous effects of irradiated chromosomes on viability. Mutations were accumulated on several hundred second chromosomes by delivering doses of 2,500r over either two or four generations for total X-ray exposures of 5,000r or 10,000r. Chromosomes treated with 5,000r were screened for lethals after the first treatment, and surviving nonlethals were used to generate families of fully treated chromosomes. The members of these families shared the effects of the first irradiation, but differed with respect to those of the second. The chromosomes treated with 10,000r were not grouped into families since mutations were accumulated independently on each chromosome in that experiment. Heterozygous effects on viability of the irradiated chromosomes were tested in both isogenic (homozygous) and nonisogenic (heterozygous) genetic backgrounds. In conjunction with these tests, homozygous viabilities were determined by the marked-inversion technique. This permitted a separation of the irradiated chromosomes into those which were drastic when made homozygous and those which were not. The results indicate that drastic chromosomes have deleterious effects in heterozygous condition, since viability was reduced by 2–4% in tests performed with the 10,000r chromosomes, and by 1% in those involving the 5,000r material. Within a series of tests, the effects were more pronounced when the genetic background was homozygous. Nondrastic irradiated chromosomes did not show detectable heterozygous effects. They also showed no homozygous effects when compared to a sample of untreated controls. In addition, there was no evidence for an induced genetic component of variance with respect to viability in these chromosomes. These results suggest that the mutants induced by high doses of X-rays are principally drastic ones which show deleterious effects on viability in heterozygous condition.  相似文献   

12.
The heterozygous effects on fitness of second chromosomes carrying mutants induced with different doses of EMS were ascertained by monitoring changes in chromosome frequencies over time. These changes were observed in populations in which the treated chromosomes, as well as untreated competitors, remained heterozygous in males generation after generation. This situation was achieved by using a translocation which links the second chromosome to the X chromosome; however, only untranslocated second chromosomes were mutagenized. Chromosomes were classified according to their effects on viability in homozygous condition. A preliminary homozygosis identified completely lethal chromosomes; secondary tests distinguished between drastic (viability index < 0.1) and nondrastic chromosomes. Chromosomes that were nondrastic after treatment were found to reduce the fitness of their heterozygous carriers by 3-5%. The data show that flies homozygous for these chromosomes were about 2.7% less viable per treatment with 1 mm EMS than flies homozygous for untreated chromosomes. By comparing the fitness-depressing effects of nondrastic EMS-induced mutants in heterozygous condition with the corresponding viability-depressing effects measured by Temin, it is apparent that the total fitness effects are several times larger than the viability effects alone. Completely lethal chromosomes derived from the most heavily treated material reduced fitness by 11% in heterozygous condition; approximately half of this reduction was due to the lethal mutations themselves.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Pinsker W  Sperlich D 《Genetics》1984,108(4):913-926
Enzyme loci located on chromosome J and U were mapped cytologically by means of a Y translocation technique. A linkage map of the two chromosomes was established in a parallel experiment and the recombination frequency in different regions of the chromosomes determined. A comparison of the cytogenetic localization of the enzyme genes in D. subobscura and D. melanogaster indicates that many paracentric inversions must have taken place in the course of divergent evolution. However, no displacements of genes from one element to another due to pericentric inversions, reciprocal translocations or transposing elements can be observed. In spite of the large number of structural rearrangements that have occurred in the phylogeny of the genus Drosophila, gross similarities of banding pattern in homologous regions of the chromosomes of the two species become apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号