首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
R. Akada  L. Kallal  D. I. Johnson    J. Kurjan 《Genetics》1996,143(1):103-117
The Saccharomyces cerevisiae G protein βγ dimer, Ste4p/Ste18p, acts downstream of the α subunit, Gpa1p, to activate the pheromone response pathway and therefore must interact with a downstream effector. Synthetic sterile mutants that exacerbate the phenotype of ste4-ts mutations were isolated to identify proteins that functionally interact with Ste4p. The identification of a ste18 mutant indicated that this screen could identify proteins that interact directly with Ste4p. The other mutations were in STE5 and the STE20 kinase gene, which act near Ste4p in the pathway, and a new gene called STE21. ste20 null mutants showed residual mating, suggesting that another kinase may provide some function. Overexpression of Ste5p under galactose control activated the pheromone response pathway. This activation was dependent on Ste4p and Ste18p and partially dependent on Ste20p. These results cannot be explained by the linear pathway of Ste4p -> Ste20p -> Ste5p. Overexpression of Cdc42p resulted in a slight increase in pheromone induction of a reporter gene, and overexpression of activated forms of Cdc42p resulted in a further twofold increase. Mutations in pheromone response pathway components did not suppress the lethality associated with the activated CDC42 mutations, suggesting that this effect is independent of the pheromone response pathway.  相似文献   

2.
The Kluyveromyces lactis heterotrimeric G protein is a canonical Gαβγ complex; however, in contrast to Saccharomyces cerevisiae, where the Gγ subunit is essential for mating, disruption of the KlGγ gene yielded cells with almost intact mating capacity. Expression of a nonfarnesylated Gγ, which behaves as a dominant-negative in S. cerevisiae, did not affect mating in wild-type and ΔGγ cells of K. lactis. In contrast to the moderate sterility shown by the single ΔKlGα, the double ΔKlGα ΔKlGγ mutant displayed full sterility. A partial sterile phenotype of the ΔKlGγ mutant was obtained in conditions where the KlGβ subunit interacted defectively with the Gα subunit. The addition of a CCAAX motif to the C-end of KlGβ, partially suppressed the lack of both KlGα and KlGγ subunits. In cells lacking KlGγ, the KlGβ subunit cofractionated with KlGα in the plasma membrane, but in the ΔKlGα ΔKlGγ strain was located in the cytosol. When the KlGβ-KlGα interaction was affected in the ΔKlGγ mutant, most KlGβ fractionated to the cytosol. In contrast to the generic model of G-protein function, the Gβ subunit of K. lactis has the capacity to attach to the membrane and to activate mating effectors in absence of the Gγ subunit.  相似文献   

3.
We have cloned and sequenced the fission yeast (Schizosaccharomyces pombe)fas1+gene, which encodes the fatty acid synthetase (FAS) β subunit, by applying a PCR technique to conserved regions in the β subunit of the α6β6types of FAS among different organisms. The deduced amino acid sequence of the Fas1 polypeptide, consisting of 2073 amino acids (Mr= 230,616), exhibits the 48.1% identity with the β subunit from the budding yeast (Saccharomyces cerevisiae). This subunit, with five different catalytic activities, bears four distinct domains, while the α subunit, the sequence of which was previously reported by Saitohet al.(S. Saitohet al.,1996,J. Cell Biol.134, 949–961), carries three domains. We have developed a co-expression system of the FAS α and β subunits by cotransformation of two expression vectors, containing thelsd1+/fas2+gene and thefas1+gene, into fission yeast cells. The isolated FAS complex showed quite high specific activity, of more than 4000 mU/mg, suggesting complete purification. Its molecular weight was determined by dynamic light scattering and ultracentrifugation analysis to be 2.1–2.4 × 106, and one molecule of the FAS complex was found to contain approximately six FMN molecules. These results indicate that the FAS complex fromS. pombeforms a heterododecameric α6β6structure. Electron micrographs of the negatively stained molecule suggest that the complex adopts a unique barrel-shaped cage architecture.  相似文献   

4.
Fatty acids and isoprenoids can be covalently attached to a variety of proteins. These lipid modifications regulate protein structure, localization and function. Here, we describe a yeast one-hybrid approach based on the Gγ recruitment system that is useful for identifying sequence motifs those influence lipid modification to recruit proteins to the plasma membrane. Our approach facilitates the isolation of yeast cells expressing lipid-modified proteins via a simple and easy growth selection assay utilizing G-protein signaling that induces diploid formation. In the current study, we selected the N-terminal sequence of Gα subunits as a model case to investigate dual lipid modification, i.e., myristoylation and palmitoylation, a modification that is widely conserved from yeast to higher eukaryotes. Our results suggest that both lipid modifications are required for restoration of G-protein signaling. Although we could not differentiate between myristoylation and palmitoylation, N-terminal position 7 and 8 play some critical role. Moreover, we tested the preference for specific amino-acid residues at position 7 and 8 using library-based screening. This new approach will be useful to explore protein-lipid associations and to determine the corresponding sequence motifs.  相似文献   

5.
Fifty-one mutants of Kluyveromyces lactis that cannot grow on lactose (Lac-) were isolated and characterized. All of the mutations are in nuclear genes, are recessive in their wild-type allele and define seven complementation groups, which we designate lac3 through lac9. Strains bearing mutations in lac3, lac5, lac7, lac8 and lac9 are also unable to grow on galactose (Gal-). Since the Gal- and Lac- phenotype co-segregate, they are probably due to a single mutation. Strains bearing mutations in any of the seven complementation groups grow normally on glucose. However, strains bearing mutations in lac3, lac5 and lac6 do not grow on glucose if lactose is also present in the medium. Likewise, strains bearing mutations in lac3 and lac5 do not grow on glucose in the presence of galactose. Complementation groups lac4 and lac5 are loosely linked and map within a cluster of auxotrophic mutations on a chromosome that we designate chromosome 2. The remaining five groups are unlinked. Thus, there is no evidence for clustering of Lac genes into an operon-like regulatory unit.——To further characterize the nature of the Lac- phenotype, the basal and inducible level of β-galactosidase activity were measured. All mutants had nearly normal basal enzyme levels, except those in lac4, which had barely detectable levels. Inducible enzyme levels varied from barely detectable levels in mutants bearing lac4 mutations up to four-fold inducible levels in strains bearing mutations in other complementation groups. In all cases, however, induction levels were below the 30-fold level obtained in wild-type cells. Three strains bearing lac5 mutations contain increased enzyme activity in the absence of inducer, indicating constitutive synthesis of β-galactosidase. In summary, these data indicate that several genes are necessary for synthesis of β-galactosidase activity.  相似文献   

6.
Heterotrimeric G proteins, composed of α, β, and γ subunits, can transduce a variety of signals from seven-transmembrane-type receptors to intracellular effectors. By whole-exome sequencing and subsequent mutation screening, we identified de novo heterozygous mutations in GNAO1, which encodes a Gαo subunit of heterotrimeric G proteins, in four individuals with epileptic encephalopathy. Two of the affected individuals also showed involuntary movements. Somatic mosaicism (approximately 35% to 50% of cells, distributed across multiple cell types, harbored the mutation) was shown in one individual. By mapping the mutation onto three-dimensional models of the Gα subunit in three different complexed states, we found that the three mutants (c.521A>G [p.Asp174Gly], c.836T>A [p.Ile279Asn], and c.572_592del [p.Thr191_Phe197del]) are predicted to destabilize the Gα subunit fold. A fourth mutant (c.607G>A), in which the Gly203 residue located within the highly conserved switch II region is substituted to Arg, is predicted to impair GTP binding and/or activation of downstream effectors, although the p.Gly203Arg substitution might not interfere with Gα binding to G-protein-coupled receptors. Transient-expression experiments suggested that localization to the plasma membrane was variably impaired in the three putatively destabilized mutants. Electrophysiological analysis showed that Gαo-mediated inhibition of calcium currents by norepinephrine tended to be lower in three of the four Gαo mutants. These data suggest that aberrant Gαo signaling can cause multiple neurodevelopmental phenotypes, including epileptic encephalopathy and involuntary movements.  相似文献   

7.
The dnaE gene of Escherichia coli encodes the DNA polymerase (α subunit) of the main replicative enzyme, DNA polymerase III holoenzyme. We have previously identified this gene as the site of a series of seven antimutator mutations that specifically decrease the level of DNA replication errors. Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles. For each a single, but different, amino acid substitution was found among the 1,160 amino acids of the protein. The observed substitutions are generally nonconservative. All affected residues are located in the central one-third of the protein. Some insight into the function of the regions of polymerase III containing the affected residues was obtained by amino acid alignment with other DNA polymerases. We followed the principles developed in 1990 by M. Delarue et al. who have identified in DNA polymerases from a large number of prokaryotic and eukaryotic sources three highly conserved sequence motifs, which are suggested to contain components of the polymerase active site. We succeeded in finding these three conserved motifs in polymerase III as well. However, none of the amino acid substitutions responsible for the antimutator phenotype occurred at these sites. This and other observations suggest that the effect of these mutations may be exerted indirectly through effects on polymerase conformation and/or DNA/polymerase interactions.  相似文献   

8.
9.
It has been reported that interferon-γ (IFN-γ) facilitates differentiation of PC-12 cells and murine adult neural stem cells. Here we show that IFN-γ promotes the differentiation of C17.2 neural progenitor cells (NPC) into a neuronal phenotype characterized by neurite outgrowth and the expression of the neuronal marker protein β-III tubulin. IFN-γ induced an increase in the activity c-jun N-terminal kinase (JNK) without affecting activities of extracellular signal-regulated kinases (ERKs 1 and 2). An inhibitor of JNK blocked the ability of IFN-γ to promote differentiation of NPC into neurons, whereas an inhibitor of ERKs 1 and 2 did not. Our findings show that the pro-inflammatory cytokine, IFN-γ has the potential to stimulate neurogenesis, suggesting roles for this cytokine in development and repair of the nervous system.  相似文献   

10.
11.
F. R. Cross 《Genetics》1990,126(2):301-308
A dominant mutation (DAF2-2) resulting in resistance to the mating pheromone alpha-factor in Saccharomyces cerevisiae MATa cells was identified and characterized genetically. Whereas wild-type cells induce a high level of the FUS1 mRNA from a low baseline on exposure to alpha-factor, DAF2-2 cells were constitutive producers of an intermediate level of FUS1 RNA; the level was increased only modestly by alpha-factor. FUS1 constitutivity required STE4, STE5 and STE18, but did not require STE2, the alpha-factor receptor gene. DAF2-2 suppressed the alpha-factor supersensitivity of a STE2 C-terminal truncation, and suppressed lethality due to scg1 mutations. Thus DAF2-2 may act by uncoupling the signaling pathway from alpha-factor binding at some point in the pathway between Scg1 inactivation and the action of Ste4, Ste5 and Ste18; this uncoupling might occur at the expense of partial constitutive activation of the pathway. DAF2-2 suppressed the unconditional cell-cycle arrest phenotype of a dominant "constitutive signaling" allele of STE4 (STE4Hpl), although the constitutive FUS1 phenotype of DAF2-2 was suppressed by ste4 null mutations; therefore DAF2-2 may directly affect the performance of the STE4 step.  相似文献   

12.
D. Kirkpatrick  F. Solomon 《Genetics》1994,137(2):381-392
Microtubules in eukaryotic cells participate in a variety of nuclear and cytoplasmic structures, reflecting functional requirements and cell cycle position. We are studying the cellular regulation of microtubule assembly and organization in the yeast Saccharomyces cerevisiae. We screened for genes that when overexpressed suppress the growth phenotype of conditional mutants in α-tubulin that arrest with excess microtubules at the nonpermissive temperature (class 2 mutations). Here we describe one such suppressing element, called ATS1 (for Alpha Tubulin Suppressor). Overexpression of this gene rescues both the growth and microtubule phenotypes of all class 2 mutations, but not the cold-sensitive mutations that arrest with no microtubules (class 1 mutations). Deletion of ATS1 confers a modest slow growth phenotype which is slightly enhanced in strains containing both a deletion of ATS1 and a class 2 tub1 mutation. The predicted ATS1 protein contains 333 amino acids and has considerable structural homology to the products of both the mammalian mitotic control gene RCC1 and the S. cerevisiae gene SRM1/PRP20. Overexpression of SRM1/PRP20 also suppresses class 2 mutants. The results suggest that this family of genes may participate in regulatory interactions between microtubules and the cell cycle.  相似文献   

13.
Upon ligand binding, G-protein-coupled receptors (GPCRs) impart the signal to heterotrimeric G proteins composed of α, β, and γ subunits, leading to dissociation of the Gα subunit from the Gβγ subunit. While the Gα subunit is imperative for downstream signaling, the Gβγ subunit, in its own right, mediates a variety of cellular responses such as GPCR desensitization via recruiting GRK to the plasma membrane and AKT stimulation. Here we report a mode of spatial regulation of the Gβγ subunit through alteration in subcellular compartmentation. RKTG (Raf kinase trapping to Golgi apparatus) is a newly characterized membrane protein specifically localized at the Golgi apparatus. The N terminus of RKTG interacts with Gβ and tethers Gβγ to the Golgi apparatus. Overexpression of RKTG impedes the interaction of Gβγ with GRK2, abrogates the ligand-induced change of subcellular distribution of GRK2, reduces isoproterenol-stimulated phosphorylation of the β2-adrenergic receptor (β2AR), and alters β2AR desensitization. In addition, RKTG inhibits Gβγ- and ligand-mediated AKT phosphorylation that is enhanced in cells with downregulation of RKTG. Silencing of RKTG also alters GRK2 internalization and compromises ligand-induced Gβ translocation to the Golgi apparatus. Taken together, our results reveal that RKTG can modulate GPCR signaling through sequestering Gβγ to the Golgi apparatus and thereby attenuating the functions of Gβγ.Heterotrimeric G proteins are composed of distinct Gα, β, and γ subunits which relay extracellular signals from heptahelical G-protein-coupled receptors (GPCRs) to downstream effectors (16, 25, 30). Gα binds Gβγ when Gα is bound with GDP but dissociates from Gβγ after GDP is replaced with GTP upon activation of GPCRs by extracellular ligand (25). Under physiologic conditions, the Gβ and Gγ subunits form a dimer in which the two subunits are not separable (10, 30). Although Gα is the primary protein that transmits the signal of GPCRs to specific intracellular effectors, such as adenylyl cyclase and phospholipase C, emerging evidence has indicated that Gβγ is able to regulate GPCR signaling through interacting with GPCRs, the Gα subunit, and downstream effectors (30). Predominantly, Gβγ is able to directly interact with and affect the functions of a variety of membrane and intracellular effectors, such as ion channels, adenylyl cyclase, G-protein-coupled receptor kinases (GRKs), and phosphatidylinositol 3-kinase (PI3K) (30). The current model of Gβγ-mediated signaling restricts it mostly to the plasma membrane (PM) (30). In the case of membrane-bound effectors, such as adenylyl cyclases or GIRK channels, Gβγ regulates the activities of these transmembrane proteins through conformational alteration. In the case of cytosolic proteins such as PLCβ2 or GRK2, whose substrates are localized to PM, Gβγ regulates their activity by recruiting the proteins to PM. The activity of Gβγ is primarily regulated by GPCR and Gα, in which GPCR activation leads to conformational changes of Gα. Such change causes replacement of Gα-bound GDP with GTP and release of Gβγ from the heterotrimeric G proteins. The activity of Gβγ could also be regulated by interacting with cytosolic proteins such as RACK1 (7). However, how Gβγ-mediated signaling is regulated in a spatial manner via subcellular compartmentation is largely unknown.GRK2 is a member of a family of GRKs that can phosphorylate the agonist-occupied GPCRs (4). Specific phosphorylation of activated receptors is associated with a decreased responsiveness of GPCR to prolonged stimulation by the agonist, also known as desensitization (15, 26). Gβγ regulates the activities of GRK2 and GRK3 toward several GPCRs (9). In cooperation with phosphatidylinositol 4,5-bisphosphate, Gβγ binds to the pleckstrin homology (PH) domain of GRK2 and recruits GRK2 to PM, in which it phosphorylates activated GPCRs (18, 30). The crystallographic structure of GRK2 in complex with Gβ1γ2 has been solved (20, 32). On the other hand, AKT is an intracellular target of PI3K and plays a critical role in cell growth, proliferation, and survival. It has been reported that Gβγ could activate AKT in a PI3K-dependent fashion (5), and Gβγ could mediate AKT activation at endosomes (13). Recent data also indicate that the p110β subunit of PI3K signals downstream of GPCR, and the AKT activation mediated by p110β is G protein dependent (14, 17).PAQR3 is a member of the progestin and adipoQ receptor (PAQR) family, and the members of this family are predicted to have seven transmembrane domains similar to GPCRs (31). Recently, we demonstrated that PAQR3 is localized at the Golgi apparatus and is involved in the spatial regulation of Raf kinase, whereby this protein was named Raf kinase trapping to Golgi apparatus (RKTG) (12). Biochemical analysis of RKTG suggested that its N terminus is localized on the cytoplasmic side of the Golgi membrane (21). Using the N terminus of RKTG to screen a Saccharomyces cerevisiae two-hybrid library, we determined that RKTG is able to interact with Gβ, and detailed analyses indicate that RKTG is a spatial regulator of Gβγ signaling.  相似文献   

14.
15.
G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function.  相似文献   

16.
Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-affected individuals uncovered a second heterozygous nonsense mutation, c.2557C>T (p.Arg853), in one simplex case. Affected individuals in both families presented with an unusual combination of childhood-onset hypogammaglobulinemia with recurrent infections, autoimmune features, and adrenal insufficiency. NF-κB2 is the principal protein involved in the noncanonical NF-κB pathway, is evolutionarily conserved, and functions in peripheral lymphoid organ development, B cell development, and antibody production. In addition, Nfkb2 mouse models demonstrate a CVID-like phenotype with hypogammaglobulinemia and poor humoral response to antigens. Immunoblot analysis and immunofluorescence microscopy of transformed B cells from affected individuals show that the NFKB2 mutations affect phosphorylation and proteasomal processing of p100 and, ultimately, p52 nuclear translocation. These findings describe germline mutations in NFKB2 and establish the noncanonical NF-κB signaling pathway as a genetic etiology for this primary immunodeficiency syndrome.  相似文献   

17.
18.
This paper presents the characterization of nine alleles of myospheroid, which encodes the beta PS subunit of the Drosophila PS integrins. On Southern blots, the mysXB87, mysXN101 and mysXR04 genes yield restriction digest patterns similar to that seen for wild-type chromosomes, however the mys1 and mysXG43 genes contain detectable deletions. mys1, mysXB87 and mysXG43 make little or no stable protein product, and genetically behave as strong lethal alleles. For the mysXN101 mutation, protein product is seen on immunoblots and a reduced amount of beta PS protein is seen at muscle attachment sites of embryos; this mutant protein retains some wild-type function, as revealed by complementation tests with weak alleles. Protein is also seen on immunoblots from mysXR04 embryos, and this allele behaves as an antimorph, being more deleterious in some crosses than the complete deficiency for the locus. mysts2 and mysnj42 are typically lethal in various combinations with other alleles at high temperatures only, but even at high physiological temperatures, neither appears to eliminate gene function completely. The complementation behaviors of mysts1 and mysts3 are quite unusual and suggest that these mutations involve regulatory phenomena. For mysts3, the data are most easily explained by postulating transvection effects at the locus. The results for mysts1 are less straightforward, but point to the possibility of a chromosome pairing-dependent negative interaction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号