首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli O157:H7, a zoonotic human pathogen for which domestic cattle are a reservoir host, produces a Shiga toxin(s) (Stx) encoded by bacteriophages. Chromosomal insertion sites of these bacteriophages define three principal genotypes (clusters 1 to 3) among clinical isolates of E. coli O157:H7. Stx-encoding bacteriophage insertion site genotypes of 282 clinical and 80 bovine isolates were evaluated. A total of 268 (95.0%) of the clinical isolates, but only 41 (51.3%) of the bovine isolates, belonged to cluster 1, 2, or 3 (P < 0.001). Thirteen additional genotypes were identified in isolates from both cattle and humans (four genotypes), from only cattle (seven genotypes), or from only humans (two genotypes). Two other markers previously associated with isolates from cattle or with clinical isolates showed similar associations with genotype groups within bovine isolates; the tir allele sp-1 and the Q933W allele were under- and overrepresented, respectively, among cluster 1 to 3 genotypes. Stx-encoding bacteriophage insertion site typing demonstrated that there is broad genetic diversity of E. coli O157:H7 in the bovine reservoir and that numerous genotypes are significantly underrepresented among clinical isolates, consistent with the possibility that there is reduced virulence or transmissibility to humans of some bovine E. coli O157:H7 genotypes.  相似文献   

2.
Previous reports have indicated that a small proportion of cattle shedding high levels of Escherichia coli O157:H7 is the main source for transmission of this organism between animals. Cattle achieving a fecal shedding status of 104 CFU of E. coli O157:H7/gram or greater are now referred to as supershedders. The aim of this study was to investigate the contribution of E. coli O157:H7 strain type to supershedding and to determine if supershedding was restricted to a specific set of E. coli O157:H7 strains. Fecal swabs (n = 5,086) were collected from cattle at feedlots or during harvest. Supershedders constituted 2.0% of the bovine population tested. Supershedder isolates were characterized by pulsed-field gel electrophoresis (PFGE), phage typing, lineage-specific polymorphism assay (LSPA), Stx-associated bacteriophage insertion (SBI) site determination, and variant analysis of Shiga toxin, tir, and antiterminator Q genes. Isolates representing 52 unique PFGE patterns, 19 phage types, and 12 SBI clusters were obtained from supershedding cattle, indicating that there is no clustering to E. coli O157:H7 genotypes responsible for supershedding. While being isolated directly from cattle, this strain set tended to have higher frequencies of traits associated with human clinical isolates than previously collected bovine isolates with respect to lineage and tir allele, but not for SBI cluster and Q type. We conclude that no exclusive genotype was identified that was common to all supershedder isolates.  相似文献   

3.
Escherichia coli O157:H7 genotypes in the bovine reservoir may differ in virulence. The proportion of clinical genotypes among cattle isolates was weakly (P = 0.054) related to the international incidence of E. coli O157:H7-associated hemolytic-uremic syndrome, varied among clinical isolates internationally, and also differed along the putative cattle-hamburger-clinical case transmission chain.  相似文献   

4.

Background

Shiga toxin (Stx) are cardinal virulence factors of enterohemorrhagic E. coli O157:H7 (EHEC O157). The gene content and genomic insertion sites of Stx-associated bacteriophages differentiate clinical genotypes of EHEC O157 (CG, typical of clinical isolates) from bovine-biased genotypes (BBG, rarely identified among clinical isolates). This project was designed to identify bacteriophage-mediated differences that may affect the virulence of CG and BBG.

Methods

Stx-associated bacteriophage differences were identified by whole genome optical scans and characterized among >400 EHEC O157 clinical and cattle isolates by PCR.

Results

Optical restriction maps of BBG strains consistently differed from those of CG strains only in the chromosomal insertion sites of Stx2-associated bacteriophages. Multiplex PCRs (stx1, stx2a, and stx2c as well as Stx-associated bacteriophage - chromosomal insertion site junctions) revealed four CG and three BBG that accounted for >90% of isolates. All BBG contained stx2c and Stx2c-associated bacteriophage – sbcB junctions. All CG contained stx2a and Stx2a-associated bacteriophage junctions in wrbA or argW.

Conclusions

Presence or absence of stx2a (or another product encoded by the Stx2a-associated bacteriophage) is a parsimonious explanation for differential virulence of BBG and CG, as reflected in the distributions of these genotypes in humans and in the cattle reservoir.  相似文献   

5.
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157 genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157 strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms. Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H(-) (the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including those associated with the cattle reservoir and human disease.  相似文献   

6.
As it descended from Escherichia coli O55:H7, Shiga toxin (Stx)-producing E. coli (STEC) O157:H7 is believed to have acquired, in sequence, a bacteriophage encoding Stx2 and another encoding Stx1. Between these events, sorbitol-fermenting E. coli O157:H(-) presumably diverged from this clade. We employed PCR and sequence analyses to investigate sites of bacteriophage integration into the chromosome, using evolutionarily informative STEC to trace the sequence of acquisition of elements encoding Stx. Contrary to expectations from the two currently sequenced strains, truncated bacteriophages occupy yehV in almost all E. coli O157:H7 strains that lack stx(1) (stx(1)-negative strains). Two truncated variants were determined to contain either GTT or TGACTGTT sequence, in lieu of 20,214 or 18,895 bp, respectively, of the bacteriophage central region. A single-nucleotide polymorphism in the latter variant suggests that recombination in that element extended beyond the inserted octamer. An stx(2) bacteriophage usually occupies wrbA in stx(1)(+)/stx(2)(+) E. coli O157:H7, but wrbA is unexpectedly unoccupied in most stx(1)-negative/stx(2)(+) E. coli O157:H7 strains, the presumed progenitors of stx(1)(+)/stx(2)(+) E. coli O157:H7. Trimethoprim-sulfamethoxazole promotes the excision of all, and ciprofloxacin and fosfomycin significantly promote the excision of a subset of complete and truncated stx bacteriophages from the E. coli O157:H7 strains tested; bile salts usually attenuate excision. These data demonstrate the unexpected diversity of the chromosomal architecture of E. coli O157:H7 (with novel truncated bacteriophages and multiple stx(2) bacteriophage insertion sites), suggest that stx(1) acquisition might be a multistep process, and compel the consideration of multiple exogenous factors, including antibiotics and bile, when chromosome stability is examined.  相似文献   

7.
Escherichia coli O157:H7 causes life-threatening outbreaks of diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome in humans and significant economic loss in agriculture and could be a potential agent of bioterrorism. Although the prevalence of E. coli O157:H7 in cattle and other species with which humans have frequent contact is high, human infections are relatively uncommon, despite a low infectious dose. A plausible explanation for the low disease incidence is the possibility that not all strains are virulent in humans. If there are substantial differences in virulence among strains in nature, then human disease may select for high virulence. We used a gnotobiotic piglet model to investigate the virulence of isolates from healthy cattle and from humans in disease outbreaks and to determine the correlation between production of Shiga toxin 1 (Stx1) and Stx2 and virulence. Overall, E. coli O157:H7 strains isolated from healthy cattle were less virulent in gnotobiotic piglets than strains isolated from humans during disease outbreaks. The amount of Stx2 produced by E. coli O157:H7 strains correlated with strain virulence as measured by a reduction in piglet survival and signs of central nervous system disease due to brain infarction. The amount of Stx1 produced in culture was not correlated with the length of time of piglet survival or with signs of central nervous system disease. We suggest that disease outbreaks select for producers of high levels of Stx2 among E. coli O157:H7 strains shed by animals and further suggest that Stx1 expression is unlikely to be significant in human outbreaks.  相似文献   

8.
Humans play little role in the epidemiology of Escherichia coli O157:H7, a commensal bacterium of cattle. Why then does E. coli O157:H7 code for virulence determinants, like the Shiga toxins (Stxs), responsible for the morbidity and mortality of colonized humans? One possibility is that the virulence of these bacteria to humans is coincidental and these virulence factors evolved for and are maintained for other roles they play in the ecology of these bacteria. Here, we test the hypothesis that the carriage of the Stx-encoding prophage of E. coli O157:H7 increases the rate of survival of E. coli in the presence of grazing protozoa, Tetrahymena pyriformis. In the presence but not the absence of Tetrahymena, the carriage of the Stx-encoding prophage considerably augments the fitness of E. coli K-12 as well as clinical isolates of E. coli O157 by increasing the rate of survival of the bacteria in the food vacuoles of these ciliates. Grazing protozoa in the environment or natural host are likely to play a significant role in the ecology and maintenance of the Stx-encoding prophage of E. coli O157:H7 and may well contribute to the evolution of the virulence of these bacteria to colonize humans.  相似文献   

9.
10.
Fate of enterohemorrhagic Escherichia coli O157:H7 in bovine feces.   总被引:12,自引:0,他引:12       下载免费PDF全文
G Wang  T Zhao    M P Doyle 《Applied microbiology》1996,62(7):2567-2570
Dairy cattle have been identified as a principal reservoir of Escherichia coli O157:H7. The fate of this pathogen in bovine feces at 5, 22, and 37 degrees C was determined. Two levels of inocula (10(3) and 10(5) CFU/g) of a mixture of five nalidixic acid-resistant E. coli O157:H7 strains were used. E. coli O157:H7 survived at 37 degrees C for 42 and 49 days with low and high inocula, respectively, and at 22 degrees C for 49 and 56 days with low and high inocula, respectively. Fecal samples at both temperatures had low moisture contents (about 10%) and water activities ( < 0.5) near the end of the study. E. coli O157:H7 at 5 degrees C survived for 63 to 70 days, with the moisture content (74%) of feces remaining high through the study. Chromosomal DNA fingerprinting of E. coli O157:H7 isolates surviving near the completion of the study revealed that the human isolate strain 932 was the only surviving strain at 22 or 37 degrees C. All five strains were isolated near the end of incubation from feces held at 5 degrees C. Isolates at each temperature were still capable of producing both verotoxin 1 and verotoxin 2. Results indicate that E. coli O157:H7 can survive in feces for a long period of time and retain its ability to produce verotoxins. Hence, bovine feces are a potential vehicle for transmitting E. coli O157:H7 to cattle, food, and the environment. Appropriate handling of bovine feces is important to control the spread of this pathogen.  相似文献   

11.
Escherichia coli O157:H7 causes hemorrhagic colitis and hemolytic-uremic syndrome in humans, and its major reservoir is healthy cattle. An F-like 92-kb plasmid, pO157, is found in most E. coli O157:H7 clinical isolates, and pO157 shares sequence similarities with plasmids present in other enterohemorrhagic E. coli serotypes. We compared wild-type (WT) E. coli O157:H7 and an isogenic DeltapO157 mutant for (i) growth rates and antibiotic susceptibilities, (ii) survival in environments with various acidity, salt, or heat conditions, (iii) protein expression, and (iv) survival and persistence in cattle following oral challenge. Growth, metabolic reactions, and antibiotic resistance of the DeltapO157 mutant were indistinguishable from those of its complement and the WT. However, in cell competition assays, the WT was more abundant than the DeltapO157 mutant. The DeltapO157 mutant was more resistant to acidic synthetic bovine gastric fluid and bile than the WT. In vivo, the DeltapO157 mutant survived passage through the bovine gastrointestinal tract better than the WT but, interestingly, did not colonize the bovine rectoanal junction mucosa as well as the WT. Many proteins were differentially expressed between the DeltapO157 mutant and the WT. Proteins from whole-cell lysates and membrane fractions of cell lysates were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis. Ten differentially expressed approximately 50-kDa proteins were identified by quadrupole-time of flight mass spectrometry and sequence matching with the peptide fragment database. Most of these proteins, including tryptophanase and glutamate decarboxylase isozymes, were related to survival under salvage conditions, and expression was increased by the deletion of pO157. This suggested that the genes on pO157 regulate some chromosomal genes.  相似文献   

12.
Escherichia coli O157:H7 is considered among the most important recently emerged food-borne bacteria causing severe hemorrhagic diarrhea. Antibiotic treatment is not recommended as a prospective curative agent against this pathogen. Therefore, potency assessment of the local lytic phage isolates infecting E. coli O157:H7 as an alternate remedy to antibiotics was the principal concern of this study. Phage isolates against E. coli O157:H7 were checked by polymerase chain reaction for the presence of the virulence genes stx1 and stx2, and the safe phages were further screened in vitro for their capacity as biocontrol agents. Two bacteriophage strains, namely PAH6 and P2BH2, that had expressed potential antibacterial activity (P?< 0.05) in vitro were selected for in vivo testing in ligated rabbit ileal loop models. Both phage isolates were capable of decreasing fluid accumulation in rabbit ileal loops along with reducing bacterial growth (r = 0.992). Combined application of the phages was found most satisfactory, reducing seven?log cycles of bacterial growth. Consistent results in both in vivo and in vitro experiments demonstrate the applicability of bacteriophages as a rapid response tool against E.?coli O157:H7. To our knowledge, this is the first successful application of the rabbit ileal loop test for therapeutic evaluation of bacteriophages.  相似文献   

13.
A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios > or = 10(2) terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 10(10) PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be > or = 10(2). In addition, phages were maintained at 10(6) PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.  相似文献   

14.
Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP)-based typing panel was developed that redundantly identified 11 genogroups that span six of the eight lineages recently described for E. coli O157:H7 (J. L. Bono, T. P. Smith, J. E. Keen, G. P. Harhay, T. G. McDaneld, R. E. Mandrell, W. K. Jung, T. E. Besser, P. Gerner-Smidt, M. Bielaszewska, H. Karch, M. L. Clawson, Mol. Biol. Evol. 29:2047–2062, 2012) and additionally defined subgroups within four of those lineages. This assay was applied to 530 isolates from human and bovine sources. The SNP-based lineage groups were concordant with previously identified E. coli O157:H7 genotypes identified by other methods and were strongly associated with carriage of specific Stx genes. Two SNP lineages (Ia and Vb) were disproportionately represented among cattle isolates, and three others (IIa, Ib, and IIb) were disproportionately represented among human clinical isolates. This 48-plex SNP assay efficiently and economically identifies biologically relevant lineages within E. coli O157:H7.  相似文献   

15.
Enterohaemorrhagic Escherichia coli O157:H7 was first implicated in human disease in the early 1980s, with ruminants cited as the primary reservoirs. Preliminary studies indicated cattle to be the sole source of E. coli O157:H7 outbreaks in humans; however, further epidemiological studies soon demonstrated that E. coli O157:H7 was widespread in other food sources and that a number of transmission routes existed. More recently, small domestic ruminants (sheep and goats) have emerged as important sources of E. coli O157:H7 human infection, particularly with the widespread popularity of petting farms and the increased use of sheep and goat food products, including unpasteurized cheeses. Although the colonization and persistence characteristics of E. coli O157:H7 in the bovine host have been studied intensively, this is not the case for small ruminants. Despite many similarities to the bovine host, the pathobiology of E. coli O157:H7 in small domestic ruminants does appear to differ significantly from that described in cattle. This review aims to critically review the current knowledge regarding colonization and persistence of E. coli O157:H7 in small domestic ruminants, including comparisons with the bovine host where appropriate.  相似文献   

16.
AIMS: To determine the potential for naturally occurring Shiga toxin-negative Escherichia coli O157 to acquire stx(2) genes. METHODS AND RESULTS: Multiple E. coli O157:H7 isolates positive for eae and ehxA, but not for stx genes, were isolated from cattle, water trough sediment, animal bedding and wild bird sources on several Ohio dairy farms. These isolates were experimentally lysogenized by stx(2)-converting bacteriophage. CONCLUSIONS: Shiga toxin-negative strains of E. coli O157 are present in multiple animal and environmental sources. SIGNIFICANCE AND IMPACT OF THE STUDY: Shiga toxin-negative strains of E. coli O157 present in the food production environment are able to acquire the stx genes, demonstrating their potential to emerge as new Shiga toxin-producing E. coli strains.  相似文献   

17.
Aims:  To quantify the variability of the Shiga toxin 2 (Stx2) production by a panel of stx2 -positive Escherichia coli O157:H7/H7- isolates from healthy cattle before and after induction with enrofloxacin.
Methods and Results:  ProSpecT® ELISA was used to quantify the Stx2 production by stx2 -positive E. coli O157:H7/H7- isolates in native conditions (basal level) or after induction with enrofloxacin. Whereas only 15·2% of the E. coli O157:H7/H7- strains studied displayed significant amounts of detectable Stx2 without induction, most of them were shown to be inducible, and at various levels, in presence of subinhibitory concentrations of enrofloxacin.
Conclusions:  We demonstrated the capability of a highly elevated proportion of stx2 -positive, but constitutively Stx2 -negative, E. coli O157:H7/H7- isolates from healthy cattle to produce significant levels of Shiga toxin Stx2 in presence of subtherapeutic concentrations of enrofloxacin, an antibiotic of the fluoroquinolones family only licensed for veterinary use.
Significance and Impact of the Study:  This study documents the risk that bovine-associated Shiga toxin producing E. coli isolates may become more frequently pathogenic to humans as a side-effect of the increasing use of veterinary fluoroquinolones in the oral treatment of food animals like cattle or poultry.  相似文献   

18.
Cattle are considered the major reservoir for Escherichia coli O157:H7, one of the newly emerged foodborne human pathogens of animal origin and a leading cause of haemorrhagic colitis in humans. A sensitive test that can accurately and rapidly detect the organism in the food animal production environment is critically needed to monitor the emergence, transmission, and colonization of this pathogen in the animal reservoir. In this study, a novel multiplex polymerase chain reaction (PCR) assay was developed by using 5 sets of primers that specifically amplify segments of the eaeA, slt-I, slt-II, fliC, rfbE genes, which allowed simultaneous identification of serotype O157:H7 and its virulence factors in a single reaction. Analysis of 82 E. coli strains (49 O157:H7 and 33 non-O157:H7) demonstrated that this PCR system successfully distinguished serotype O157:H7 from other serotypes of E. coli and provided accurate profiling of the shiga-like toxins and the intimin adhesin in individual strains. This multiplex PCR assay did not cross-react with the background bacterial flora in bovine faeces and could detect a single O157:H7 organism per gram of faeces when combined with an enrichment step. Together, these results indicate that the multiplex PCR assay can be used for specific identification and profiling of E. coli O157:H7 isolates, and may be applied to rapid and sensitive detection of E. coli O157:H7 in bovine faeces when combined with an enrichment step.  相似文献   

19.
Rumen contents as a reservoir of enterohemorrhagic Escherichia coli   总被引:11,自引:0,他引:11  
Abstract We investigatedthe role of the rumen fermentation as a barries to the foodborne pathogen, Escherichia coli O157:H7. Strains of E. coli , including several isolates of O157:H7, grew poorly in media which simulated the ruminal environment of a well-fed animal. Strains of E. coli O157:H7 did not display a superior tolerance to ruminal conditions which may facilitate their colonization of the bovine digestive tract. Unrestricted growth of E. coli was observed in rumen fluid collected from fasted cattle. Growth was inhibited by rumen fluid collected from well-fed animals. Well-fed animals appear less likely to become reservoirs for pathogenic E. coli . These results have implications for cattle slaughter practices and epidemiological studies of E. coli O157:H7.  相似文献   

20.
Aims:  To evaluate host range and lytic capability of four bacteriophages (rV5, wV7, wV8 and wV11) against Escherichia coli O157:H7 (STEC O157:H7) from cattle and humans.
Methods and Results:  Four hundred and twenty-two STEC O157:H7 isolates (297 bovine; 125 human) were obtained in Alberta, Canada. The four phages were serially diluted and incubated for 5 h with overnight cultures of STEC O157:H7 to estimate their multiplicity of infection (MOI). All bovine STEC O157:H7 were subjected to pulsed-field gel electrophoresis (PFGE) and phage typing (PT). Phage wV7 lysed all human and bovine isolates irrespective of PFGE genotype or PT phenotype and exhibited the lowest MOI (0·004–0·006, P  < 0·0001) of all phages. Phages rV5 and wV11 exhibited a lower MOI (0·002–0·04, P  < 0·0001) than did phage wV8 (25–29) and they had a narrower host range than wV7 or wV8. Phages rV5, wV11 and wV8 lysed 342 (81·0%), 321 (76·1%) and 407 (96·4%), respectively, of the 422 isolates. Susceptibility of bovine STEC O157:H7 to rV5, w11 and wV8 was influenced by PFGE genotype and/or PT phenotype.
Conclusions:  Phages exhibited activity against the majority of bovine and human STEC O157:H7 isolates. PFGE genotype and/or PT phenotype of the host-target influenced their vulnerability to phage attack. Susceptibility of bovine STEC O157:H7 to phage may also differ among farms. Both lytic capability and host range should be considered in the selection of therapeutic phage for on-farm control of STEC O157:H7.
Significance and Impact of the Study:  The present work indicates that a four-phage cocktail should be equally effective at mitigating STEC O157:H7 isolates both of bovine and of human origin. Given that some STEC O157:H7 exhibited resistance to some but not all phages, a phage cocktail is the logical approach to efficacious on-farm therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号