首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gray PC  Vale W 《FEBS letters》2012,586(14):1836-1845
Cripto is a small, GPI-anchored signaling protein that regulates cellular survival, proliferation, differentiation and migration during normal developmental processes and tumorigenesis. Cripto functions as an obligatory co-receptor for the TGF-β ligands Nodal, GDF1 and GDF3 but attenuates signaling of others such as activin-A, activin-B and TGF-β1. Soluble, secreted forms of Cripto also activate Src, ras/raf/MAPK and PI3K/Akt pathways via a mechanism that remains largely obscure. This review describes the biological roles and signaling mechanisms of Cripto, highlighting our identification of the 78 kDa glucose regulated protein (GRP78) as a cell surface receptor/co-factor required for Cripto signaling via both TGF-β and Src/MAPK/PI3K pathways. We discuss emerging evidence indicating that Cripto/GRP78 signaling regulates normal somatic stem cells and their tumorigenic counterparts.  相似文献   

2.
Despite its clinical significance, joint morphogenesis is still an obscure process. In this study, we determine the role of transforming growth factor beta (TGF-beta) signaling in mice lacking the TGF-beta type II receptor gene (Tgfbr2) in their limbs (Tgfbr2(PRX-1KO)). In Tgfbr2(PRX-1KO) mice, the loss of TGF-beta responsiveness resulted in the absence of interphalangeal joints. The Tgfbr2(Prx1KO) joint phenotype is similar to that in patients with symphalangism (SYM1-OMIM185800). By generating a Tgfbr2-green fluorescent protein-beta-GEO-bacterial artificial chromosome beta-galactosidase reporter transgenic mouse and by in situ hybridization and immunofluorescence, we determined that Tgfbr2 is highly and specifically expressed in developing joints. We demonstrated that in Tgfbr2(PRX-1KO) mice, the failure of joint interzone development resulted from an aberrant persistence of differentiated chondrocytes and failure of Jagged-1 expression. We found that TGF-beta receptor II signaling regulates Noggin, Wnt9a, and growth and differentiation factor-5 joint morphogenic gene expressions. In Tgfbr2(PRX-1KO) growth plates adjacent to interphalangeal joints, Indian hedgehog expression is increased, whereas Collagen 10 expression decreased. We propose a model for joint development in which TGF-beta signaling represents a means of entry to initiate the process.  相似文献   

3.
4.
This article focuses on recent findings that the type V TGF-beta receptor (TbetaR-V), which co-expresses with other TGF-beta receptors (TbetaR-I, TbetaR-II, and TbetaR-III) in all normal cell types studied, is involved in growth inhibition by IGFBP-3 and TGF-beta and that TGF-beta activity is regulated by two distinct endocytic pathways (clathrin- and caveolar/lipid-raft-mediated). TGF-beta is a potent growth inhibitor for most cell types, including epithelial and endothelial cells. The signaling by which TGF-beta controls cell proliferation is not well understood. Many lines of evidence indicate that other signaling pathways, in addition to the prominent TbetaR-I/TbetaR-II/Smad2/3/4 signaling cascade, are required for mediating TGF-beta-induced growth inhibition. Recent studies revealed that TbetaR-V, which is identical to LRP-1, mediates IGF-independent growth inhibition by IGFBP-3 and mediates TGF-beta-induced growth inhibition in concert with TbetaR-I and TbetaR-II. In addition, IRS proteins and a Ser/Thr-specific protein phosphatase(s) are involved in the TbetaR-V-mediated growth inhibitory signaling cascade. The TbetaR-V signaling cascade appears to cross-talk with the TbetaR-I/TbetaR-II, insulin receptor (IR), IGF-I receptor (IGF-IR), integrin and c-Met signaling cascades. Attenuation or loss of the TbetaR-V signaling cascade may enable carcinoma cells to escape from TGF-beta growth control and may contribute to the aggressiveness and invasiveness of these cells via promoting epithelial-to-mesenchymal transdifferentiation (EMT). Finally, the ratio of TGF-beta binding to TbetaR-II and TbetaR-I is a signal controlling TGF-beta partitioning between two distinct endocytosis pathways and resultant TGF-beta responsiveness. These recent studies have provided new insights into the molecular mechanisms underlying TGF-beta-induced cellular growth inhibition, cross-talk between the TbetaR-V and other signaling cascades, the signal that controls TGF-beta responsiveness and the role of TbetaR-V in tumorigenesis.  相似文献   

5.
TGF-beta receptors.   总被引:2,自引:0,他引:2  
  相似文献   

6.
Dual role for TGF-beta1 in apoptosis   总被引:6,自引:0,他引:6  
The exposure of cells to TGF-beta1 can trigger a variety of cellular responses including the inhibition of cell growth, migration, differentiation and apoptosis. TGF-beta1-regulated apoptosis is cell type and context-dependent, indeed TGF-beta1 provides signals for both cell survival or apoptosis. The molecular mechanisms underlying the role of TGF-beta1 in apoptosis remains unclear. The proteins that primarily mediate the intracellular signaling of TGF-beta1 are the members of the Smad family. Nevertheless, TGF-beta1 signaling can also cooperate with the death receptor apoptotic pathway (Fas, TNF), with the intracellular modulators of apoptosis JNK and p38 MAP kinases, Akt, NF-kappaB, and with the mitochondrial apoptotic pathway mediated by members of the Bcl-2 family. Moreover, the involvement of TGF-beta1 in the production of oxidative stress and in preventing the inflammatory processes required for the clearance of apoptotic bodies is further evidence of its integration into apoptotic pathways. The interaction and balance between different stimuli provides the basis for the pro- or anti-apoptotic output of TGF-beta1 signaling in a given cell.  相似文献   

7.
8.
9.
X H Feng  R Derynck 《The EMBO journal》1997,16(13):3912-3923
Transforming growth factor-beta (TGF-beta) signals through a heteromeric complex of related type I and type II serine/threonine kinase receptors. In Mv1Lu cells the type I receptor TbetaRI mediates TGF-beta-induced gene expression and growth inhibition, while the closely related type I receptors Tsk7L and TSR1 are inactive in these responses. Using chimeras between TbetaRI and Tsk7L or TSR1, we have defined the structural requirements for TGF-beta signaling by TbetaRI. The extracellular/transmembrane or cytoplasmic domains of TbetaRI and Tsk7L were functionally not equivalent. The juxtamembrane domain, including the GS motif, and most regions in the kinase domain can functionally substitute for each other, but the alphaC-beta4-beta5 region from kinase subdomains III to V conferred a distinct signaling ability. Replacement of this sequence in TbetaRI by the corresponding domain of Tsk7L inactivated TGF-beta signaling, whereas its introduction into Tsk7L conferred TGF-beta signaling. The differential signaling associated with this region was narrowed down to a sequence of eight amino acids, the L45 loop, which is exposed in the three-dimensional kinase structure and diverges highly between TbetaRI and Tsk7L or TSR1. Replacement of the L45 sequence in Tsk7L with that of TbetaRI conferred TGF-beta responsiveness to the Tsk7L cytoplasmic domain in Mv1Lu cells. Thus, the L45 sequence between kinase subdomains IV and V specifies TGF-beta responsiveness of the type I receptor.  相似文献   

10.
Growth differentiation factor 9 (GDF9) is an oocyte-expressed member of the transforming growth factor beta (TGF-beta) superfamily and is required for normal ovarian follicle development and female fertility. GDF9 acts as a paracrine factor and affects granulosa cell physiology. Only a few genes regulated by GDF9 are known. Our microarray analysis has identified gremlin as one of the genes up-regulated by GDF9 in cultures of granulosa cells. Gremlin is a known member of the DAN family of bone morphogenetic protein (BMP) antagonists, but its expression and function in the ovary are unknown. We have investigated the regulation of gremlin in mouse granulosa cells by GDF9 as well as other members of the TGF-beta superfamily. GDF9 and BMP4 induce gremlin, but TGF-beta does not. In addition, in cultures of granulosa cells, gremlin negatively regulates BMP4 signaling but not GDF9 activity. The expression of gremlin in the ovary was also examined by in situ hybridization. A distinct change in gremlin mRNA compartmentalization occurs during follicle development and ovulation, indicating a highly regulated expression pattern during folliculogenesis. We propose that gremlin modulates the cross-talk between GDF9 and BMP signaling that is necessary during follicle development because both ligands use components of the same signaling pathway.  相似文献   

11.
Growth differentiation factor 11 (GDF11) contributes to regionalize the mouse embryo along its anterior-posterior axis by regulating the expression of Hox genes. The identity of the receptors that mediate GDF11 signalling during embryogenesis remains unclear. Here, we show that GDF11 can interact with type I receptors ALK4, ALK5 and ALK7, but predominantly uses ALK4 and ALK5 to activate a Smad3-dependent reporter gene. Alk5 mutant embryos showed malformations in anterior-posterior patterning, including the lack of expression of the posterior determinant Hoxc10, that resemble defects found in Gdf11-null mutants. A heterozygous mutation in Alk5, but not in Alk4 or Alk7, potentiated Gdf11(-/-)-like phenotypes in vertebral, kidney and palate development in an Acvr2b(-/-) background, indicating a genetic interaction between the two receptor genes. Thus, the transforming growth factor-beta (TGF-beta) receptor ALK5, which until now has only been associated with the biological functions of TGF-beta1 to TGF-beta3 proteins, mediates GDF11 signalling during embryogenesis.  相似文献   

12.
Yu L  Hébert MC  Zhang YE 《The EMBO journal》2002,21(14):3749-3759
Through the action of its membrane-bound type I receptors, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation and apoptosis. Many of the signaling responses induced by TGF-beta are mediated by Smad proteins, but certain evidence has suggested that TGF-beta can also signal independently of Smads. We found in mouse mammary epithelial (NMuMG) cells, which respond to TGF-beta treatment in multiple ways, that TGF-beta-induced activation of p38 MAP kinase is required for TGF-beta-induced apoptosis, epithelial-to-mesenchymal transition (EMT), but not growth arrest. We further demonstrated that activation of p38 is independent of Smads using a mutant type I receptor, which is incapable of activating Smads but still retains the kinase activity. This mutant receptor is sufficient to activate p38 and cause NMuMG cells to undergo apoptosis. However, it is not sufficient to induce EMT. These results indicate that TGF-beta receptor signals through multiple intracellular pathways and provide first-hand biochemical evidence for the existence of Smad-independent TGF-beta receptor signaling.  相似文献   

13.
Transforming growth factor (TGF)-beta is a multifunctional growth factor with important roles in development, cell proliferation, and matrix deposition. It signals through the sequential activation of two serine/threonine kinase receptors, the type I and type II receptors. A third cell surface receptor, betaglycan, serves as a co-receptor for TGF-beta in some cell types, enhancing TGF-beta-mediated signaling. We have examined the function of betaglycan in renal epithelial LLC-PK1 cells that lack endogenous betaglycan. We demonstrate that the expression of betaglycan in LLC-PK1 cells results in inhibition of TGF-beta signaling as measured by reporter gene expression, thymidine incorporation, collagen production, and phosphorylation of the downstream signaling effectors Smad2 and Smad3. In comparison, the expression of betaglycan in L6 myoblasts enhances TGF-beta signaling, which is consistent with the published literature. The effects of betaglycan in LLC-PK1 cells are not mediated by ligand sequestration or increased production of a soluble form of the receptor, which has been reported to serve as a ligand antagonist. We demonstrate instead that in LLC-PK1 cells, unlike L6 cells, expression of betaglycan prevents association between the type I and type II TGF-beta receptors, which is required for signaling. This is a function of the glycosaminoglycan modifications of betaglycan. Betaglycan in LLC-PK1 cells exhibits higher molecular weight glycosaminoglycan (GAG) chains than in L6 cells, and a GAG- betaglycan mutant does not inhibit TGF-beta signaling or type I/type II receptor association in LLC-PK1 cells. Our data indicate that betaglycan can function as a potent inhibitor of TGF-beta signaling by a novel mechanism and provide support for an essential but complex role for proteoglycan co-receptors in growth factor signaling.  相似文献   

14.
The transforming growth factor (TGF)-β family member myostatin is an important regulator of myoblast, adipocyte, and fibroblast growth and differentiation, but the signaling mechanisms remain to be established. We therefore determined the contribution of myostatin type I receptors activin receptor-like kinase-4 (ALK4) and -5 (ALK5) and different coreceptors in C2C12 myoblasts, C3H10T1/2 mesenchymal stem cells, and 3T3-L1 fibroblasts, as well as in primary myoblast and fibroblasts. We performed siRNA-mediated knockdown of each receptor and measured signaling activity using Smad3-dependent luciferase and Smad2 phosphorylation assays with nontargeting siRNA as control. We find that myostatin utilizes ALK4 in myoblasts, whereas it has a preference for ALK5 in nonmyogenic cells. Notably, our results show that coreceptor Cripto is expressed in myoblasts but not in the nonmyogenic cells and that it regulates myostatin activity. More specifically, myostatin requires Cripto in myoblasts, whereas Cripto represses activin activity and TGF-β signaling is Cripto independent. Cripto-mediated myostatin signaling is dependent on both epidermal growth factor (EGF)-like and Cripto-FRL1-cryptic (CFC) domains, whereas activin signaling is solely conferred by the CFC domain. Furthermore, Cripto down-regulation enhances myoblast differentiation, showing its importance in myostatin signaling. Together, our results identify a molecular mechanism that explains the cell-type specific aspects of signaling by myostatin and other TGF-β family members.  相似文献   

15.
Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor beta1 (TGF-beta1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-beta1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-beta1-induced angiogenesis mainly by compromising cell survival. We established that TGF-beta1 stimulated the expression of TGF-alpha mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-beta1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-beta1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-alpha alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-beta1. We therefore propose that TGF-beta1 promotes angiogenesis at least in part via the autocrine secretion of TGF-alpha, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.  相似文献   

16.
17.
TGF-beta signaling in cancer--a double-edged sword.   总被引:30,自引:0,他引:30  
Transforming growth factor (TGF) beta1 is a potent growth inhibitor, with tumor-suppressing activity. Cancers are often refractile to this growth inhibition either because of genetic loss of TGF-beta signaling components or, more commonly, because of downstream perturbation of the signaling pathway, such as by Ras activation. Carcinomas often secrete excess TGF-beta1 and respond to it by enhanced invasion and metastasis. Therapeutic approaches should aim to inhibit the TGF-beta-induced invasive phenotype, but also to retain its growth-inhibitory and apoptosis-inducing effects.  相似文献   

18.
Growth differentiation factor 15 or macrophage inhibitory cytokine-1 (GDF15/MIC-1) is a divergent member of the transforming growth factor β superfamily and has a diverse pathophysiological roles in cancers, cardiometabolic disorders, and other diseases. GDF15 controls hematopoietic growth, energy homeostasis, adipose tissue metabolism, body growth, bone remodeling, and response to stress signals. The role of GDF15 in cancer development and progression is complicated and depends on the specific cancer type, stage, and tumor microenvironment. Recently, research on GDF15 and GDF15-associated signaling has accelerated due to the identification of the GDF15 receptor: glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). Therapeutic interventions to target GDF15 and/or GFRAL revealed the mechanisms that drive its activity and might improve overall outcomes of patients with metabolic disorders and cancer. This review highlights the structure and functions of GDF15 and its receptor, emphasizing the pleiotropic role of GDF15 in obesity, tumorigenesis, metastasis, immunomodulation, and cachexia.  相似文献   

19.
Betaglycan, a cell surface heparan sulphate proteoglycan, is traditionally thought to function by binding transforming growth factor type beta (TGF-beta) via its core protein and then transferring the growth factor to its signaling receptor, the type II receptor. However, there is increasing evidence that the function of betaglycan is more complex. Here, we have evaluated the role of betaglycan through adenoviral expression (Adv-BG) in myoblasts and fibroblasts and found that in Adv-BG-infected cells, the activity of p3TP-Lux and pCTGF-Luc reporter after transient transfection, as well as fibronectin synthesis, all of which are target processes for TGF-beta, were highly increased in the absence of TGF-beta. It is known that this cytokine strongly inhibits myogenin induction in myoblasts. In Adv-BG-infected myoblasts, the activity of pMyo-Luc reporter after transient transfection was strongly inhibited in the absence of TGF-beta. These effects were not precluded by applying TGF-beta-blocking antibodies, the soluble TGF-beta type II receptor, or soluble betaglycan to sequester TGF-beta present in the cell medium. Furthermore, the data suggest that the cytoplasmic domain of betaglycan is required for this TGF-beta-independent response, giving further support to a ligand-independent signaling effect for betaglycan. The process also seemed independent of Smad-2 phosphorylation, although Adv-BG infection induced p38 phosphorylation, and SB239063, an inhibitor of the p38 pathway, inhibited p3TP-Lux-driven activity. These results suggest a novel signaling mechanism for betaglycan, which is independent of the canonical TGF-beta signal pathway although it involves TGF-beta receptors and takes place through p38 pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号