首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The NADPH oxidase of human neutrophils is highly sensitive to calcium concentration and is inhibited in intact cells and cell-free preparations by various phenothiazine drugs. Addition of calmodulin to preparations of NADPH oxidase stimulates enzymatic rates from 1.4–2.5-fold. Addition of calmodulin and calcium, but not calcium alone, to NADPH oxidase preparations which have been inactivated by EDTA results in the restoration of activity. No activation is observed when membrane preparations containing latent NADPH oxidase are exposed to calcium and calmodulin. These studies suggest a role for calmodulin in the control of NADPH oxidase but that calmodium alone is not sufficient for activation.  相似文献   

2.
Addition of bovine brain calmodulin and S-100 inhibited Tetrahymena calmodulin-induced stimulation of guanylate cyclase, but they did not affect enzymatic activity in the presence of calcium alone. Troponin C shows little effect on the cyclase activity regardless of the presence or absence of Tetrahymena calmodulin. The inhibitory effects of brain calmodulin and S-100 were overcome by the addition of Tetrahymena calmodulin, but not by calcium. Both calmodulins from Tetrahymena and bovine brain elicited stimulation of heart phosphodiesterase, while troponin C and S-100 did not affect the phosphodiesterase activity in the presence and absence of Tetrahymena calmodulin.  相似文献   

3.
We have examined the kinetics of NADPH oxidase activation induced by arachidonic acid or SDS in a cell-free system using mixtures of recombinant Phox proteins and purified flavocytochrome b-245. Activation of oxidase activity required the simultaneous presence of p47(phox), flavocytochrome b-245, and the anionic amphiphile. The activation of electron transfer reactions was much more rapid when iodonitrotetrazolium violet was used as electron acceptor than when oxygen alone was the acceptor. We propose that this difference represents an intermediate activation state of NADPH oxidase in which electron flow can proceed from NADPH to enzyme flavin (and hence to iodonitrotetrazolium violet) but not from flavin to heme (or not between the hemes). A model for NADPH oxidase activation is presented that is consistent with these observations.  相似文献   

4.
Production of superoxide (O(2)(·-)) by NADPH oxidases contributes to the development of hypertension and atherosclerosis. Factors responsible for activation of NADPH oxidases are not well understood; interestingly, cardiovascular disease is associated with both altered NADPH oxidase activity and age-associated mitochondrial dysfunction. We hypothesized that mitochondrial dysfunction may contribute to activation of NADPH oxidase. The effect of mitochondrial inhibitors on phagocytic NADPH oxidase in human lymphoblasts and whole blood was measured at the basal state and upon PKC-dependent stimulation with PMA using extracellular 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium or mitochondria-targeted 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethylpiperidine spin probes and electron spin resonance (ESR). Intracellular cytosolic calcium [Ca(2+)](i) was measured spectrofluorometrically using fura-2 AM. Incubation of lymphoblasts with the mitochondrial inhibitors rotenone, antimycin A, CCCP, or ruthenium red (an inhibitor of mitochondrial Ca(2+) uniporter) did not significantly change basal activity of NADPH oxidase. In contrast, preincubation with the mitochondrial inhibitors prior to PMA stimulation of lymphoblasts resulted in two- to three-fold increase of NADPH oxidase activity compared with stimulation with PMA alone. Most notably, the intracellular Ca(2+)-chelating agent BAPTA-AM abolished the effect of mitochondrial inhibitors on NADPH oxidase activity. Cytosolic Ca(2+) measurements with fura-2 AM showed that the mitochondrial inhibitors increased [Ca(2+)](i), while BAPTA-AM abolished the increase in [Ca(2+)](i). Furthermore, depletion of cellular Ca(2+) with thapsigargin attenuated CCCP- and antimycin A-mediated activation of NADPH oxidase in the presence of PMA by 42% and 31%, correspondingly. Our data suggest that mitochondria regulate PKC-dependent activation of phagocytic NADPH oxidase. In summary, increased mitochondrial O(2)(·-) and impaired buffering of cytosolic Ca(2+) by dysfunctional mitochondria result in enhanced NADPH oxidase activity, which may contribute to the development of cardiovascular diseases.  相似文献   

5.
Superoxide (.O2-) production by the NADPH oxidase of a membrane fraction derived from rabbit peritoneal neutrophils activated by 4 beta-phorbol 12-myristate 13-acetate (PMA) was studied at 25 degrees C under different conditions, and measured by the superoxide dismutase inhibitable reduction of cytochrome c. Whereas PMA-activated rabbit neutrophils incubated in a glucose-supplemented medium exhibited a substantial rate of production of .O2-, the membranes prepared by sonication of the activated neutrophils were virtually unable to generate .O2- in the presence of NADPH. Instead, they exhibited an NADPH-dependent diaphorase activity, measured by the superoxide-dismutase-insensitive reduction of cytochrome c. Upon addition of arachidonic acid, which is known to elicit oxidase activation, the NADPH diaphorase activity of the rabbit neutrophil membranes vanished and was stoichiometrically replaced by an NADPH oxidase activity. The emerging oxidase activity was fully sensitive to iodonium biphenyl, a potent inhibitor of the respiratory burst, whereas the diaphorase activity was not affected. Addition of 0.1% Triton X-100 or an excess of arachidonic acid, acting as detergent, resulted in the reappearance of the diaphorase activity at the expense of the oxidase activity. These results indicate that the diaphorase-oxidase transition is reversible. When the rabbit neutrophil membranes were supplemented with rabbit neutrophil cytosol, guanosine 5'-[gamma-thio]triphosphate and Mg2+, in addition to arachidonic acid, not only the NADPH diaphorase activity disappeared, but the emerging NADPH oxidase activity was markedly enhanced (about 10 times compared to that of membranes treated with arachidonic acid alone). The diaphorase-oxidase transition was accompanied by a 10-fold increase in the Km for NADPH, suggesting a change of conformation propagated to the NADPH-binding site during the transition. The treatment of PMA-activated rabbit neutrophils with cross-linking reagents, like glutaraldehyde or 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide, prevented the loss of the PMA-elicited oxidase activity upon disruption of the cells by sonication, suggesting that the interactions between the components of the oxidase complex are stabilized by cross-linking.  相似文献   

6.
ATP-dependent oxalate facilitated calcium transport in sarcoplasmic reticulum (SR) preparations obtained from rabbit vastus lateralis muscle (fast skeletal muscle; Fsr) and soleus (slow skeletal muscle; Ssr) was determined. Addition of exogenous calmodulin did not stimulate calcium transport in either Fsr or Ssr preparations. Fsr and Ssr previously washed in 1 mM EGTA demonstrated a reduced capacity to transport Ca2+; the exogenous addition of calmodulin (0.24 μM) under these conditions, did not restore uptake activity but significantly decreased the steady-state level of Ca2+ uptake. Extracts of skeletal SR prepared by treatment with 0.2 mM EDTA and boiling produced significantly more stimulation of red cell Ca2+ATPase activity than extracts prepared by boiling alone. This stimulation of red cell Ca2+-ATPase was inhibited to a significant extent by 4880, a known anti-calmodulin agent. Radioimmunoassay revealed that extracts prepared by boiling or EDTA-treatment followed by boiling contained considerable amounts of calmodulin. Washing with 1 mM EGTA, though, did not release any calmodulin from SR. These studies reveal that calmodulin is present in both Fsr and Ssr and can only be removed by harsh treatments. The role of calmodulin in skeletal muscle Ca2+-transport remains to be determined.  相似文献   

7.
Protein kinase C may be important in leukocyte function, because it is activated by phorbol myristate acetate (PMA), a potent stimulus of the respiratory burst in neutrophils. The localization of protein kinase C was compared in unstimulated and PMA-stimulated human neutrophils. Protein kinase C was primarily cytosolic in unstimulated cells but became associated with the particulate fraction after treatment of cells with PMA. The particulate-associated kinase activity did not require added calcium and lipids, but when extracted by Triton X-100 (greater than or equal to 0.2%), calcium and phospholipid dependence could be demonstrated. The EC50 of PMA for stimulating kinase redistribution and activation of NADPH oxidase, the respiratory burst enzyme, were similar (30 to 40 nM). Redistribution of protein kinase C occurred rapidly (no lag) and preceded NADPH oxidase activation (30 sec lag). These results suggest that redistribution of protein kinase C is linked to activation of the respiratory burst in human neutrophils.  相似文献   

8.
Human neutrophil IgA receptors (FcalphaR) trigger phagocytosis of IgA-opsonized particles and activate the NADPH oxidase complex ultimately leading to pathogen destruction. Signal transduction events triggered by FcalphaR have not been investigated in the context of NADPH oxidase activation. In this study, we show that crosslinking FcalphaR triggers the release of Ca(2+) from an intracellular store that was unchanged by the addition of extracellular EGTA. This was in contrast to the thapsigargin-triggered Ca(2+) signal, which activates store-operated Ca(2+) entry pathways (SOCP) and is sensitive to extracellular EGTA. Buffering extracellular Ca(2+) with EGTA had no effect on FcalphaR-triggered NADPH oxidase activation, suggesting that SOCP was not required for activation by FcalphaR. EGTA inhibited thapsigargin-triggered NADPH oxidase activation but had no effect on PMA-triggered responses. The intracellular Ca(2+) chelator BAPTA caused dose-dependent inhibition of both FcalphaR-triggered and thapsigargin-triggered NADPH oxidase activation but had no effect on PMA-triggered responses. Our data demonstrate that FcalphaR-triggered NADPH oxidase activation is dependent on the release of Ca(2+) from an intracellular store, but is independent of SOCP.  相似文献   

9.
A major function of human neutrophils (PMN) during inflammation is formation of oxygen radicals through activation of the respiratory burst enzyme, NADPH oxidase. Stimulus-induced production of both phosphatidic acid (PA) and diglyceride (DG) has been suggested to mediate oxidase activity; however, transductional mechanisms and cofactor requirements necessary for activation are poorly defined. We have utilized PMN permeabilized with Staphylococcus aureus alpha-toxin to elucidate the signal pathway involved in eliciting oxidase activity and to investigate whether PA or DG act as second messengers. PMN were permeabilized in cytoplasmic buffer supplemented with ATP and EGTA for 15 min before addition of NADPH and various cofactors. Oxidase activation was assessed by superoxide dismutase inhibitable reduction of ferricytochrome C; PA and DG levels were measured by radiolabeled product formation or by metabolite mass formation. Both superoxide (O2-) and PA formation were initiated by 10 microM GTP gamma S; addition of cytosolic levels of calcium ions (Ca2+, 120 nM) enhanced O2- and PA formation 1.5-2 fold. DG levels showed little change during these treatments. PA formation preceded O2- production and varying GTP gamma S levels had parallel effects on O2- and PA formation. However, while PA formation and oxidase activation occurred in tandem at Ca2+ levels of < 1 microM, higher calcium enhanced PA formation but inhibited O2- production. Removal of ATP completely blocked O2- production but had little effect on PA formation; in contrast, if ATP was replaced with ATP gamma S, parallel production of PA and O2- occurred in the absence of other cofactors. Finally, while inhibition of PA production by ethanol pretreatment led to inhibition of O2- formation in PMN treated with GTP gamma S alone, in cells stimulated with a combination of GTP gamma S and Ca2+, ethanol continued to inhibit PA formation but had no effect on O2- production. Our results do not support a role for DG in the signal transduction path leading to oxidase activation and, while we show a close correlation between oxidase activation and PA production under many physiologic conditions, we also demonstrate that PA is not sufficient to induce oxidase activation and O2- formation can occur when PA production is inhibited.  相似文献   

10.
Activation of the NADPH oxidase of phagocytic cells requires the action of Rac2 or Rac1, members of the Ras superfamily of GTP-binding proteins. Rac proteins are active when in the GTP-bound form and can be regulated by a variety of proteins that modulate the exchange of GDP for GTP and/or GTP hydrolysis. The p190 Rac GTPase Activating Protein (GAP) inhibits human neutrophil NADPH oxidase activity in a cell-free assay system with a K1 of approximately 100 nM. Inhibition by p190 was prevented by GTP gamma S, a nonhydrolyzable analogue of GTP. Similar inhibition was seen with a second protein exhibiting Rac GAP activity, CDC42Hs GAP. The effect of p190 on superoxide (O2-) formation was reversed by the addition of a constitutively GTP-bound Rac2 mutant or Rac1-GTP gamma S but not by RhoA-GTP gamma S. Addition of p190 to an activated oxidase produced no inhibitory effect, suggesting either that p190 no longer has access to Rac in the assembled oxidase or that Rac-GTP is not required for activity once O2- generation has been initiated. These data confirm the role of Rac in NADPH oxidase regulation and support the view that it is the GTP form of Rac that is necessary for oxidase activation. Finally, they raise the possibility that NADPH oxidase may be regulated by the action of GAPs for Rac proteins.  相似文献   

11.
NADPH oxidase is a superoxide-generating, membrane-bound complex activated in stimulated phagocytes or in a reconstituted system consisting of membranes, cytosolic components and arachidonate or SDS. To delineate mechanism of oxidase activation in the cell-free system, hydrolysis of phosphoinositides in the combined membrane-cytosol oxidase mixture was investigated. Arachidonate promoted hydrolysis of membrane-[3H]-phosphatidylinositol by cytosolic phospholipase C. PI hydrolysis was similarly supported by other unsaturated fatty acids and by SDS. Unlike activation of the NADPH oxidase, PI hydrolysis required the presence of calcium ions. Implications of these findings to the mechanism of NADPH oxidase activation are discussed.  相似文献   

12.
The stimulation of adenylate cyclase by various exogenous proteases has been described in several tissues. In this study, we describe a 2 to 7-fold increase of adenylate cyclase activity in a particulate preparation from rat platelets following prior exposure of the homogenate to calcium. Calmodulin alone was unable to increase the adenylate cyclase activity and trifluoperazine only partially inhibited the calcium-dependent activation. On the other hand, calcium had a slight stimulatory effect on the particulate preparation but this activation was greatly enhanced by the addition of supernatant. Only the combined addition of calcium, supernatant and calmodulin to washed particulate preparations reconstituted the activation seen in homogenates. The activation was significantly inhibited by leupeptin and thiol reagents. It is concluded that platelets contain a calcium-dependent protease-like activity that is able to increase adenylate cyclase activity in membrane fractions. This phenomenon may be involved in the regulation of adenylate cyclase activity in platelets.  相似文献   

13.
Chronic hyperaldosteronism has been associated with an increased cancer risk. We recently showed that aldosterone causes an increase in cell oxidants, DNA damage, and NF-κB activation. This study investigated the mechanisms underlying aldosterone-induced increase in cell oxidants in kidney tubule cells. Aldosterone caused an increase in both reactive oxygen and reactive nitrogen (RNS) species. The involvement of the activation of NADPH oxidase in the increase in cellular oxidants was demonstrated by the inhibitory action of the NADPH oxidase inhibitors DPI, apocynin, and VAS2870 and by the migration of the p47 subunit to the membrane. NADPH oxidase activation occurred as a consequence of an increase in cellular calcium levels and was mediated by protein kinase C. The prevention of RNS increase by BAPTA-AM, W-7, and L-NAME indicates a calcium-calmodulin activation of NOS. A similar pattern of effects of the NADPH oxidase and NOS inhibitors was observed for aldosterone-induced DNA damage and NF-κB activation, both central to the pathogenesis of chronic aldosteronism. In summary, this paper demonstrates that aldosterone, via the mineralocorticoid receptor, causes an increase in kidney cell oxidants, DNA damage, and NF-κB activation through a calcium-mediated activation of NADPH oxidase and NOS. Therapies targeting calcium, NOS, and NADPH oxidase could prevent the adverse effects of hyperaldosteronism on kidney function as well as its potential oncogenic action.  相似文献   

14.
We report here that NADPH analogs such as 2'5'ADP, ATP, and 2'AMP paradoxically activate constitutive calcium/calmodulin regulated nitric oxide synthases (cNOS), including the endothelial isoform (eNOS) and the neuronal isoform (nNOS). These activators compete with NADPH by filling the binding site of the adenine moiety of NADPH, but do not occupy the entire NADPH binding domain. Effects of these analogs on cNOS's include increasing the electron transfer rate to external acceptors, as assessed by cytochrome c reductase activity in the absence of calmodulin. In addition, NO synthase activity in the presence of calmodulin (with or without added calcium) was increased by the addition of NADPH analogs. In contrast, the same NADPH analogs inhibit iNOS, the calcium insensitive inducible isoform, which lacks control elements found in constitutive isoforms. Because ATP and ADP are among the effective activators of cNOS isoforms, these effects may be physiologically relevant.  相似文献   

15.
Reactive oxygen species (ROS) primarily produced via NADPH oxidase play an important role for killing microorganisms in neutrophils. In this study we examined if ROS production in Human promyelocytic leukemia cells (HL60) differentiated into neutrophil-like cells (dHL60) induces ER stress and activates the unfolded protein response (UPR). To cause ROS production cells were treated with PMA or by chronic hyperglycemia. Chronic hyperglycemia failed to induce ROS production and did not cause activation of the UPR in dHL60 cells. PMA, a pharmacologic NADPH oxidase activator, induced ER stress in dHL60 cells as monitored by IRE-1 and PERK pathway activation, and this was independent of calcium signaling. The NADPH oxidase inhibitor, DPI, abolished both ROS production and UPR activation. These results show that ROS produced by NADPH oxidase induces ER stress and suggests a close association between the redox state of the cell and the activation of the UPR in neutrophil-like HL60 cells.  相似文献   

16.
NAD (P) H-dependent reduction of nicotinamide N-oxide was investigated with rabbit liver preparations. Microsomes, microsomal NADPH-cytochrome c reductase or cytosolic aldehyde oxidase alone exhibited no nicotinamide N-oxide reductase activity in the presence of NADPH or NADH. However, when the microsomal preparations were combined with the cytosolic enzyme, a significant N-oxide reductase activity was observed in the presence of the reduced pyridine nucleotide. The activity was enhanced by FAD or methyl viologen. Cytosol alone supplemented with NADPH or NADH exhibited only a slight, but when combined with microsomes, a significant N-oxide reductase activity. Based on these facts, we propose a new electron transfer system consisting of NADPH-cytochrome c reductase and aldehyde oxidase, which exhibits nicotinamide N-oxide reductase activity in the presence of the reduced pyridine nucleotide.  相似文献   

17.
The effect of calcium and/or magnesium on O2- production by guinea-pig eosinophils stimulated by the calcium ionophore A23187 was studied in comparison to neutrophils. In the absence of calcium, A23187 did not stimulate O2- production in resting eosinophils and neutrophils, regardless of the presence of extracellular magnesium. The A23187-induced O2- production by both cells increased linearly with extracellular Ca2+ concentrations. However, the concentration of Ca2+ required for maximum O2- production in eosinophils was about 10-times lower than that required of neutrophils. The addition of Mg2+ strongly inhibited O2- production, especially in eosinophils at low Ca2+ concentrations. The intracellular Ca2+ concentration was lower in eosinophils than in neutrophils in the resting state, and the enhancement of the intracellular Ca2+ concentration in response to A23187 was much lower in eosinophils than in neutrophils. The activation of the NADPH-dependent O2(-)-forming enzyme (NADPH oxidase) in eosinophils depended on extracellular calcium, as observed in O2- production. However, the NADPH oxidase activity in the particulate fraction from A23187-stimulated eosinophils was only slightly affected by the addition of divalent cations or EDTA. The compound W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride), a calmodulin antagonist, significantly inhibited O2- production by both cells. On the other hand, the compound H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride), a protein kinase C antagonist, was less effective on O2- production than was W-7. H-7 had little effect on O2- production of eosinophils. These findings suggest that NADPH oxidase might be activated by a smaller Ca2+ concentration through the calmodulin-dependent reaction. This was not observed with protein kinase C, at least in eosinophils.  相似文献   

18.
In guinea pig periotoneal neutrophils NaF at a concentration of above 5 mM elicited a dose-dependent, delayed and sustained activation of NADPH oxidase. Unlike in human neutrophils, in guinea pig cells, this response was independent of extracellular calcium. Fura2 fluorescence measurements indicated also a fluoride-mediated moderate elevation in the level of cytosolic calcium concentration. Pretreatment of neutrophils with pertussis toxin, blocked fluoride-promoted activation of NADPH oxidase, indicating that NaF stimulation was mediated by a G protein which is a pertussis toxin substrate. NaF-elicited calcium elevation was insensitive to the toxin. Upon transfer of NaF-stimulated cells to a fluoride-free medium, superoxide release declined and calcium levels diminished. The response of the deactivated, fluoride-prestimulated guinea pig neutrophils to a secondary stimulation with phorbol myristate acetate (PMA) or fMet-Leu-Phe, was either unaffected by the previous challenge with NaF (PMA) or augmented by it (the chemotactic peptide). In parallel to the activation of NADPH oxidase, NaF also induced translocation of protein kinase C to cell membranes. This effect was also abolished by a pretreatment with pertussis toxin.  相似文献   

19.
Fluoride-mediated activation of guinea pig neutrophils   总被引:1,自引:0,他引:1  
In guinea pig peritoneal neutrophils NaF at a concentration of above 5 mM elicited a dose-dependent, delayed and sustained activation of NADPH oxidase. Unlike in human neutrophils, in guinea pig cells, this response was independent of extracellular calcium. Fura2 fluorescence measurements indicated also a fluoride-mediated moderate elevation in the level of cytosolic calcium concentration. Pretreatment of neutrophils with pertussis toxin, blocked fluoride-promoted activation of NADPH oxidase, indicating that NaF stimulation was mediated by a G protein which is a pertussis toxin substrate. NaF-elicited calcium elevation was insensitive to the toxin. Upon transfer of NaF-stimulated cells to a fluoride-free medium, superoxide release declined and calcium levels diminished. The response of the deactivated, fluoride-prestimulated guinea pig neutrophils to a secondary stimulation with phorbol myristate acetate (PMA) or fMet-Leu-Phe, was either unaffected by the previous challenge with NaF (PMA) or augmented by it (the chemotactic peptide). In parallel to the activation of NADPH oxidase, NaF also induced translocation of protein kinase C to cell membranes. This effect was also abolished by a pretreatment with pertussis toxin.  相似文献   

20.
The kinetics of sodium dodecyl sulfate-induced activation of respiratory burst oxidase (NADPH oxidase) in a fully soluble cell-free system from resting (control) or phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system containing solubilized membranes and cytosol fractions (cytosol) derived from control neutrophils (control cell-free system), the values of Km and Vmax for NADPH of the NADPH oxidase from control neutrophils continuously increased with increasing concentrations of cytosol, but with increasing concentrations of solubilized membranes from the control neutrophils, Km values continuously decreased, suggesting cytosolic activation factor-dependent continuous changes in the affinity of NADPH oxidase to NADPH. In a cell-free system containing solubilized membranes and cytosol prepared from PMA-stimulated neutrophils, NADPH oxidase was not activated after the addition of NADPH. However, cytosol from control neutrophils activated the NADPH oxidase of PMA-stimulated neutrophils in a cell-free system. Cytosol from PMA-stimulated neutrophils did not activate the control neutrophil oxidase, although it contained no inhibitors of NADPH oxidase activation. The results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted with an increasing period of time after the stimulation of neutrophils, and that the affinity of PMA-stimulated neutrophil NADPH oxidase to NADPH may almost be the same as that of control neutrophil oxidase. It was concluded that the affinity of NADPH oxidase to NADPH was closely associated with interaction between solubilized membranes and cytosolic activation factors, as indicated by the concentration ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号