首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A poly(A) polymerase has been purified from the soluble protein fraction of calf thymus gland. The activity is cytoplasmic and nonparticulate. Mn-2+ATP is the preferred substrate. On the basis of disc gel electrophoresis in sodium dodecyl sulfate-acrylamide gels, gel filtration, and sedimentation velocity in sucrose gradients, the enzyme has a molecular weight of 62,000 and appears to consist of one polypeptide chain. The enzyme preparation is shown to be nearly homogeneous by disc gel electrophoresis and isoelectric-focusing. The activity has a pI of about 7.4. The specific activity of the enzyme is about 1700 mumol per hour per mg of protein, giving a turnover number of about 1800 mol of substrate per mol of enzyme min- minus 1. The activity is highly specific for ATP and is inhibited by other ribonucleoside triphosphates. It is sensitive to high levels of RNA-polymerase inhibitors. Km for oligoadenylate is 50 muM in the presence of Mn-2+ and 200 muM in Mg-2+ and equivalent Vmax is achieved with either metal ion. The initiator function may be filled by a variety of oligoribonucleotides having a free 3'-OH.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Controlled, limited proteolysis of homogeneous calf thymus terminal deoxynucleotidyl transferase (EC 2.7.7.31) using immobilized Staphylococcus aureus V-8 protease results in a low molecular weight form of the enzyme which possesses unaltered catalytic activity. Analysis of the products of limited proteolysis using sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that only the large subunit, β, is modified from a molecular weight of 30,500 to 25,500. The small subunit, α, which has a molecular weight of 9500, is unchanged. A shift in the apparent isoelectric pH of the calf enzyme following proteolysis is observed from pI = 8.2 to 7.8. Both forms of the enzyme are homogeneous in the isoelectric focusing gel system, as determined by coincidence of single protein bands with terminal transferase activity on the gel. The specific activities of cleaved and uncleaved terminal transferase proteins, as well as their thermal stabilities, are comparable. These results suggest that the polypeptide domain involved in terminal transferase enzymatic activity can be probed further by novel methods involving limited proteolysis without concomitant loss in enzymatic function.  相似文献   

9.
A complex "replication competent" holoenzyme form of DNA polymerase alpha (RC-alpha) was purified 10,000 fold from calf thymus through the use of an assay employing primed single stranded circular DNA template. The RC-alpha form could partially replicate a double-stranded oligo(dT)-tailed linear DNA and could completely convert primed single-stranded circular DNA to its double stranded form. The RC-alpha was resolved by denaturing gel electrophoresis into at least 10 discrete polypeptide species ranging in apparent molecular mass from 200 to 47 kilodaltons; three of the bands (apparent Mr of 200, 118 and 63 kilodaltons) displayed DNA polymerase activity in denaturing gel activity assay. The isolation of RC-alpha required the use of absolutely fresh calf thymus, the inclusion of ATP and protease inhibitors throughout the purification procedure. Treatment of the RC-alpha with the neutralizing anti-DNA polymerase alpha monoclonal antibody SJK 132-20 (Tanaka et al. (1982), J. Biol. Chem. 257, 8386-8390) in nondenaturing conditions selected the complete set of 10 polypeptides, whereas treatment in denaturing conditions selected the 200 kilodalton catalytic DNA polymerase active polypeptide. The properties and the behaviour of the RC-alpha preparation following removal of specific polypeptides strongly suggested that the capacity of RC-alpha to extend and replicate long template requires the function of nonproteolysed form of the 200 kilodaltons catalytic DNA polymerase core and at least 6 other auxiliary polypeptides of, respectively, 98, 87, 63, 54, 49 and 47 kilodaltons.  相似文献   

10.
Processivity of the DNA polymerase alpha-primase complex from calf thymus   总被引:4,自引:0,他引:4  
K T Hohn  F Grosse 《Biochemistry》1987,26(10):2870-2878
The processivity of the DNA polymerase alpha-primase complex from calf thymus was analyzed under various conditions. When multi-RNA-primed M13 DNA was used as the substrate, the DNA polymerase alpha-primase complex was found to incorporate 19 +/- 3 nucleotides per primer binding event. This result was confirmed by product analysis on sequencing gels following DNA synthesis on poly(dT) X (rA)10. The processivity depends strongly on the assay conditions but does not correlate with enzymic activity. Lowering the concentration of Mg2+ ions to less than 2 mM increases the processivity to 60. Replacing Mg2+ by 0.2 mM Mn2+ results in 90 nucleotides being incorporated per primer binding event. Neither the presence of ATP nor the addition of noncognate deoxynucleotide triphosphates affects the processivity of the DNA polymerase alpha-primase complex. Lower processivity was induced by lowering the reaction temperature, by adding spermine, spermidine, or putrescine, in the presence of the antibiotics novobiocin and ciprofloxacin, by adding Escherichia coli single-stranded DNA binding protein, or by adding calf thymus topoisomerase II and RNase H. Three single-stranded DNA binding proteins from calf thymus, including unwinding protein 1, do not affect processivity to any significant extent. Freshly prepared DNA polymerase alpha-primase complex exhibits in addition to its processivity of 20 further discrete processivities of about 55, 90, and 105. This result suggest that further subunits of the polymerase alpha-primase complex are necessary to reconstitute the holoenzyme form of the eukaryotic replicase.  相似文献   

11.
The primase activity of DNA polymerase alpha from calf thymus   总被引:14,自引:0,他引:14  
The nearly homogeneous 9 S DNA polymerase alpha from calf thymus contains a primase activity that allows priming of DNA synthesis on single-stranded templates in the presence of ribonucleoside triphosphates. Both on synthetic and natural single-stranded templates, RNA primers of 8-15 nucleotides in length are formed. In the absence of dNTPs, primers of some hundred nucleotides in length are observable. ATP and/or GTP are required for the priming reaction. UTP and CTP cannot initiate the RNA synthesis. M13 single-stranded DNA can be converted to the nicked double helical form upon primase-primed replication by the 9 S enzyme. Priming occurs mostly at specific sites on the M13 genome and replication products of up to 6000 nucleotides in length are formed. In the presence of the single-stranded DNA binding protein from Escherichia coli, specificity of priming is strongly increased. The primase is inhibited by salt and actinomycin; it is insensitive to alpha-amanitin and N-ethylmaleimide. Due to the strong complex formation between DNA polymerase and primase, it has not been possible to separate the two activities of the multisubunit 9 S enzyme.  相似文献   

12.
13.
14.
15.
16.
Attempts to prevent the urea conversion of a 200-230,000 molecular weight DNA polymerase alpha to a 150-170,000 molecular weight form by the inclusion of protease inhibitors have not been successful. No other method has been found capable of dissociating a 50-70,000 fragment or subunit from the DNA polymerase subunit. Addition of this 50-70,000 subunit to the polymerase subunit does not aid the binding of the enzyme to DNA, but does have an effect on the utilisation of synthetic template-initiator complexes by the polymerase subunit.  相似文献   

17.
The ability of the 9S and 5.7S DNA polymerase alpha subspecies from calf thymus in elongating a mismatched primer terminus has been investigated. With poly(dA) as template, the elongation rate for (dT)8dG, (dT)8dC and (dT)10dGdT is 20-fold lower for the 9S enzyme and 5-fold lower for the 5.7S enzyme as compared to (dT)10. The presence of a second mismatch at the primer terminus reduces the elongation rate further by a factor of two. Exonucleolytic excision of the mismatches can be excluded. With (dT)8dG (dT)n as primer we show, that at least five T-residues have to follow the mismatch in order to establish the elongation rate of a perfectly paired primer. The KM value for (dT)10 dG as primer is 400 nM as compared to 10 nM for (dT)10. Addition of Mn2+ increases the relative efficiency of elongation of the mismatched primers.  相似文献   

18.
DNA primase associated with 10 S DNA polymerase alpha from calf thymus   总被引:2,自引:0,他引:2  
Among multiple subspecies of DNA polymerase alpha of calf thymus, only 10 S DNA polymerase alpha had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase alpha through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase alpha. These results indicate that the primase is tightly bound to 10 S DNA polymerase alpha. The RNA polymerizing activity was resistant to alpha-amanitin, required high concentration of all four ribonucleoside triphosphates (800 microM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase alpha because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

19.
The DNA polymerase alpha-DNA primase complex was purified over 17,000-fold to near homogeneity from calf thymus using an immunoaffinity column. Sodium dodecyl sulfate gel electrophoresis revealed three polypeptides with molecular weights of 140, 50 and 47 kDa, in a ratio of 1:2:0.25. The complex showed a sedimentation coefficient of 9.7 S, a Stokes radius of 56 A and a native molecular weight of 250-260 kDa. Taken together, the data suggest that the calf thymus dNA polymerase alpha-DNA primase complex is essentially a heterotrimer of large (140 kDa) and small (50 kDa) subunits in a ratio of 1:2, with a globular conformation. Electron-microscopic studies of the complex revealed a spherical particle of 120 A in diameter, in agreement with the physiochemical results. The binding of the complex to DNA was also demonstrated.  相似文献   

20.
Methods of extraction and assay of terminal deoxynucleotidyl transferase (TdT) from human lymphoblasts and calf thymus were compared. A high salt concentration was mandatory for complete enzyme extraction, while dialysis of the crude extract resulted in a major loss of enzyme activity. In addition, TdT was partially purified from lymphoblasts of patients with acute lymphoblastic leukemia. The Km for the monomer, deoxy-guanosine 5′-triphosphate (dGTP), is high (~0.1 mm) in the presence of either Mg2+ or Mn2+, whereas the Km for the initiator, poly(deoxyadenylic acid [poly(d(pA)50)], with an average chain length of 50 residues, is 2.5 μm in the presence of Mg2+ and 0.3 μm in the presence of Mn2+. The maximum velocity is higher for the calf thymus TdT in the presence of Mg2+ than in Mn2+. Human TdT catalyzes the polymerization of dGTP at a higher rate in the presence of Mn2+ than with Mg2+. These data illustrate that partially purified human TdT differs in catalytic properties from the purified calf thymus enzyme. Therefore, optimal conditions for assay of TdT in extracts from calf and human tissues differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号