首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a novel strategy for constructing yeast to improve levels of amylase gene expression and the practical potential of yeast by combining δ-integration and polyploidization through cell fusion. Streptococcus bovis α-amylase and Rhizopus oryzae glucoamylase/α-agglutinin fusion protein genes were integrated into haploid yeast strains. Diploid strains were constructed from these haploid strains by mating, and then a tetraploid strain was constructed by cell fusion. The α-amylase and glucoamylase activities of the tetraploid strain were increased up to 1.5- and tenfold, respectively, compared with the parental strain. The diploid and tetraploid strains proliferated faster, yielded more cells, and fermented glucose more effectively than the haploid strain. Ethanol productivity from raw starch was improved with increased ploidy; the tetraploid strain consumed 150 g/l of raw starch and produced 70 g/l of ethanol after 72 h of fermentation. Our strategy for constructing yeasts resulted in the simultaneous overexpression of genes integrated into the genome and improvements in the practical potential of yeasts.  相似文献   

2.
The heavy metal resistance of yeasts isolated from sugary substrates such as orange, palm wine and pineapple and identified asSaccharomyces carlsbergensis andS. cerevisiae was studied. The yeast isolates were tested against different concentrations of cadmium, copper, manganese, silver and zinc salts ranging from 1 to 20 mmol/L. Local yeasts showed resistance to 3–15 mmol/L cadmium, 18–20 copper, 16–20 manganese, 1–9 silver and 16–19 for zinc. The significance of the results is discussed in relation to the effects of heavy metals on growth of microorganisms and selection of yeasts for the brewing industry in Nigeria.  相似文献   

3.
Various auxotrophic mutants of diploid heterothallic Japanese sake strains of Saccharomyces cerevisiae were utilized for selecting mating-competent diploid isolates. The auxotrophic mutants were exposed to ultraviolet (UV) irradiation and crossed with laboratory haploid tester strains carrying complementary auxotrophic markers. Zygotes were then selected on minimal medium. Sake strains exhibiting a MATa or MATα mating type were easily obtained at high frequency without prior sporulation, suggesting that the UV irradiation induced homozygosity at the MAT locus. Flow cytometric analysis of a hybrid showed a twofold higher DNA content than the sake diploid parent, consistent with tetraploidy. By crossing strains of opposite mating type in all possible combinations, a number of hybrids were constructed. Hybrids formed in crosses between traditional sake strains and between a natural nonhaploid isolate and traditional sake strains displayed equivalent fermentation ability without any apparent defects and produced comparable or improved sake. Isolation of mating-competent auxotrophic mutants directly from industrial yeast strains allows crossbreeding to construct polyploids suitable for industrial use without dependence on sporulation.  相似文献   

4.
A large number of non-Saccharomyces yeasts were isolated from grapes of Bobal variety and identified according to their physiological and molecular characteristics. The yeasts were tested to determine the presence of β-glucosidase, β-xylosidase, α-arabinosidase, and α-rhamnosidase activities and five isolates were selected. All enzymatic activities were induced by the presence of glycosides as the only carbon source in the medium, which seems to be a characteristic of the yeast isolate, and were characterized according to different parameters of enological interest.  相似文献   

5.
Aims:  To study the yeast diversity of Nigerian palm wines by comparison with other African strains.
Methods and Results:  Twenty-three Saccharomyces cerevisiae strains were obtained from palm wine samples collected at four locations in eastern Nigeria, and characterized using different molecular techniques: internal transcribed spacer restriction fragment length polymorphism and sequence analysis, pulsed field gel electrophoresis, inter delta typing and microsatellite multilocus analysis. These techniques revealed that palm wine yeasts represent a group of closely related strains that includes other West African isolates (CBS400, NCYC110, DVPG6044). Population analysis revealed an excess of homozygote strains and an allelic richness similar to wine suggestive of local domestication. Several other African yeast strains were not connected to this group. Ghana sorghum beer strains and other African strains (DBVPG1853 and MUCL28071) displayed strikingly high relatedness with European bread, beer or wine strains, and the genome of strain MUCL30909 contained African and wine-type alleles, indicating its hybrid origin.
Conclusions:  Nigerian palm wine yeast represents a local specific yeast flora, whereas a European origin or hybrid was suspected for several other Africa isolates.
Significance and Impact of the Study:  This study presents the first genetic characterization of an autochthonous African palm wine yeast population and confirms the idea that human intervention has favoured yeast migration.  相似文献   

6.
High-ethanol-resistant yeasts, characterized as Saccharomyces sp., were isolated from Nigerian palm wine with added sucrose for high gravity brewing. The yeast isolates that survived the highest ethanol production were used to ferment brewery wort and produced 8.2 to 8.5% (v/v) ethanol; values almost double that of the control yeast from a local brewery.  相似文献   

7.
A note on the leavening activity of yeasts isolated from Nigerian palm wine   总被引:1,自引:1,他引:0  
The role of the yeast flora of Nigerian palm wine in the leavening activity of the beverage was investigated by subjecting organisms from the wine to dough-raising tests. Those with appreciable leavening activity were identified as Saccharomyces cerevisiae and Candida spp. They produced maximum dough volumes in 3–4 h at 37°C. The study has provided experimental evidence that yeasts contribute to the leavening activity of palm wine and has identified strains which have potential utility in commercial bread baking.  相似文献   

8.
AIMS: To test the possibility that wines available in the marketplace may contain culturable yeasts and to evaluate the 5.8S-ITS rDNA sequence analysis as adequate means for the identification of isolates. METHODS AND RESULTS: As a case study, typical Greek wines were surveyed. Sequence analysis of the 5.8S-ITS rDNA was tested for its robustness in species or strain identification. Sixteen isolates could be assigned into the species Brettanomyces bruxellensis, Saccharomyces cerevisiae and Rhodotorula pinicola, whereas four isolates could not be safely identified. B. bruxellensis was the dominant species present in house wines, while non-Saccharomyces sp. were viable in aged wines of high alcohol content. CONCLUSIONS: Yeast population depends on postfermentation procedures or storage conditions. Although 5.8S-ITS rDNA sequence analysis is generally a rapid method to identify wine yeast isolates at the species level, or even below that, it may not be sufficient for some genera. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report to show that commercial wines may possess diverse and potentially harmful yeast populations. The knowledge of yeasts able to reside in this niche environment is essential towards integrated quality assurance programmes. For selected species, the 5.8S-ITS rDNA sequence analysis is a rapid and accurate means.  相似文献   

9.
Genetic instability and genome renewal may cause loss of heterozygosity (LOH) in homothallic wine yeasts (Saccharomyces cerevisiae), leading to the elimination of the recessive lethal or deleterious alleles that decrease yeast fitness. LOH was not detected in genetically stable wine yeasts during must fermentation. However, after sporulation, the heterozygosity of the new yeast population decreased during must fermentation. The frequency of mating between just-germinated haploid cells from different tetrads was very low, and the mating of haploid cells from the same ascus was favored because of the physical proximity. Also, mating restriction between haploid cells from the same ascus was found, leading to a very low frequency of self spore clone mating. This mating restriction slowed down the LOH process of the yeast population, maintaining the heterozygote frequency higher than would be expected assuming a fully random mating of the haploid yeasts or according to the Mortimer genome renewal proposal. The observed LOH occurs because of the linkage of the locus MAT to the chromosome III centromere, without the necessity for self spore clone mating or the high frequency of gene conversion and rapid asymmetric LOH observed in genetically unstable yeasts. This phenomenon is enough in itself to explain the high level of homozygosis found in natural populations of wine yeasts. The LOH process for centromere-linked markers would be slower than that for the nonlinked markers, because the linkage decreases the frequency of newly originated heterozygous yeasts after each round of sporulation and mating. This phenomenon is interesting in yeast evolution and may cause important sudden phenotype changes in genetically stable wine yeasts.  相似文献   

10.
Togninia minima is the main fungal species associated with grapevine leaf stripe disease worldwide. This species is mainly known from its asexual state in nature; nevertheless, a biallelic heterothallic mating strategy has been confirmed for this species based on in vitro crossing studies. There are no data available on the incidence of an active sexual cycle within the populations of this species in many grapevine‐producing countries as well as Iran. The possibility of a clandestine sexual cycle within the Iranian isolates of T. minima was evaluated by analysing the distribution and frequency of the mating‐type alleles on a microspatial and a macrogeographical scales. Towards this aim, a total of 90 T. minima isolates were recovered from grapevines with esca disease from the vineyards in north and north‐western Iran. A multiplex PCR method previously designed by authors was applied for simultaneous identification and determination of the mating‐type alleles in T. minima populations. The results on the screening of mating‐type alleles using multiplex PCR method revealed the mating‐type identity of 77 isolates as Mat1‐2 and 23 isolates as Mat1‐1. Our results showed that both Mat1‐1 and Mat1‐2 isolates are present in a single vineyard and even on single vines. The distribution of mating‐type alleles in the sampled area skewed from the 1 : 1 ratio (77 : 23); however, co‐occurrence of both mating types in a single vineyard and even on single vines is suggestive for the presence of an active sexual cycle for T. minima in north‐western Iran.  相似文献   

11.
The aim of this research was to identify the Saccharomyces spp. associated with Žilavka grapes and to evaluate their enzymatic activities, H2S production and micro-fermentation performance. For this purpose, a total of 143 yeast strains isolated from three production areas of the Mostar wine region (Bosnia and Herzegovina) were studied and analysed. Firstly, yeasts were identified to genus level by growth on WL nutrient agar and the test of assimilation of lysine. Later, molecular identification at species level was carried out with RFLP analysis of 18S rDNA + ITS region, and at strain level with microsatellite-primed PCR (MSP-PCR). At physiological level yeast strains were grouped into different clusters by means of the Joining-Tree-Clustering-Method. All yeasts tested were identified as S. cerevisiae, resulting a total of 18 different strains. All of the investigated strains produced hydrogen sulphide, 89% were able to complete the fermentation, and none of them was able to synthesize killer toxins. Since enzymes play a very important role in wine aroma development, it was very encouraging that 33% of the strains were able to synthesize pectinolytic enzyme but only one produced β-glucosidase. In the second part of the selection process two indigenous strains were compared with commercial yeast in a microvinification and Žilavka wines with different profiles of volatiles were obtained. This research represents a first step in the selection of indigenous yeast strains from the Mostar region with the goal of maintaining the specific organoleptic characteristics of Žilavka wine.  相似文献   

12.
We successfully demonstrated batch ethanol fermentation repeated ten times from raw starch with high ethanol productivity. We constructed a yeast diploid strain coexpressing the maltose transporter AGT1, α-amylase, and glucoamylase. The introduction of AGT1 allows maltose and maltotriose fermentation as well as the improvement of amylase activities. We also found that α-amylase activity during fermentation was retained by the addition of 10 mM calcium ion and that the highest α-amylase activity was 9.26 U/ml during repeated fermentation. The highest ethanol productivity was 2.22 g/l/h at the fourth batch, and after ten cycles, ethanol productivity of more than 1.43 g/l/h was retained, as was α-amylase activity at 6.43 U/ml.  相似文献   

13.
Genetic analysis was performed on 45 commercial yeasts which are used in winemaking because of their superior fermentation properties. Genome sizes were estimated by propidium iodide fluorescence and flow cytometry. Forty strains had genome sizes consistent with their being diploid, while five had a range of aneuploid genome sizes that ranged from 1.2 to 1.8 times larger. The diploid strains are all Saccharomyces cerevisiae, based on genetic analysis of microsatellite and minisatellite markers and on DNA sequence analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA of four strains. Four of the five aneuploid strains appeared to be interspecific hybrids between Saccharomyces kudriavzevii and Saccharomyces cerevisiae, with the fifth a hybrid between two S. cerevisiae strains. An identification fingerprint was constructed for the commercial yeast strains using 17 molecular markers. These included six published trinucleotide microsatellites, seven new dinucleotide microsatellites, and four published minisatellite markers. The markers provided unambiguous identification of the majority of strains; however, several had identical or similar patterns, and likely represent the same strain or mutants derived from it. The combined use of all 17 polymorphic loci allowed us to identify a set of eleven commercial wine yeast strains that appear to be genetically homozygous. These strains are presumed to have undergone inbreeding to maintain their homozygosity, a process referred to previously as ‘genome renewal’.  相似文献   

14.
AIM: To investigate the microbiological and biochemical changes which occur in palm wine during the tapping of felled oil palm trees. METHODS AND RESUlts: Microbiological and biochemical contents of palm wine were determined during the tapping of felled oil palm trees for 5 weeks and also during the storage. Saccharomyces cerevisiae dominated the yeast biota and was the only species isolated in the mature samples. Lactobacillus plantarum and Leuconostoc mesenteroides were the dominated lactic acid bacteria, whilst acetic acid bacteria were isolated only after the third day when levels of alcohol had become substantial. The pH, lactic and acetic acid concentrations during the tapping were among 3.5-4.0%, 0.1-0.3% and 0.2-0.4% respectively, whilst the alcohol contents of samples collected within the day were between 1.4% and 2.82%; palm wine which had accumulated over night, 3.24% to 4.75%; and palm wine held for 24 h, over 7.0%. CONCLUSION: Accumulation of alcohol in palm wine occurs in three stages during the tapping and marketing with the concurrent lactic and acetic acid fermentation taking place as well. SIGNIFICANCE AND IMPACT OF THE STUDY: Yeasts, lactic and acetic acid bacteria are all important in the fermentation of palm wine and influence the composition of the product.  相似文献   

15.
Genetic instability and genome renewal may cause loss of heterozygosity (LOH) in homothallic wine yeasts (Saccharomyces cerevisiae), leading to the elimination of the recessive lethal or deleterious alleles that decrease yeast fitness. LOH was not detected in genetically stable wine yeasts during must fermentation. However, after sporulation, the heterozygosity of the new yeast population decreased during must fermentation. The frequency of mating between just-germinated haploid cells from different tetrads was very low, and the mating of haploid cells from the same ascus was favored because of the physical proximity. Also, mating restriction between haploid cells from the same ascus was found, leading to a very low frequency of self spore clone mating. This mating restriction slowed down the LOH process of the yeast population, maintaining the heterozygote frequency higher than would be expected assuming a fully random mating of the haploid yeasts or according to the Mortimer genome renewal proposal. The observed LOH occurs because of the linkage of the locus MAT to the chromosome III centromere, without the necessity for self spore clone mating or the high frequency of gene conversion and rapid asymmetric LOH observed in genetically unstable yeasts. This phenomenon is enough in itself to explain the high level of homozygosis found in natural populations of wine yeasts. The LOH process for centromere-linked markers would be slower than that for the nonlinked markers, because the linkage decreases the frequency of newly originated heterozygous yeasts after each round of sporulation and mating. This phenomenon is interesting in yeast evolution and may cause important sudden phenotype changes in genetically stable wine yeasts.  相似文献   

16.

Aim

To investigate physicochemical characteristics and especially genotypic diversity of the main culturable micro‐organisms involved in fermentation of sap from Borassus akeassii, a newly identified palm tree from West Africa.

Methods and Results

Physicochemical characterization was performed using conventional methods. Identification of micro‐organisms included phenotyping and sequencing of: 26S rRNA gene for yeasts, 16S rRNA and gyrB genes for lactic acid bacteria (LAB) and acetic acid bacteria (AAB). Interspecies and intraspecies genotypic diversities of the micro‐organisms were screened respectively by amplification of the ITS1‐5.8S rDNA‐ITS2/16S‐23S rDNA ITS regions and repetitive sequence‐based PCR (rep‐PCR). The physicochemical characteristics of samples were: pH: 3·48–4·12, titratable acidity: 1·67–3·50 mg KOH g?1, acetic acid: 0·16–0·37%, alcohol content: 0·30–2·73%, sugars (degrees Brix): 2·70–8·50. Yeast included mainly Saccharomyces cerevisiae and species of the genera Arthroascus, Issatchenkia, Candida, Trichosporon, Hanseniaspora, Kodamaea, Schizosaccharomyces, Trigonopsis and Galactomyces. Lactobacillus plantarum was the predominant LAB species. Three other species of Lactobacillus were also identified as well as isolates of Leuconostoc mesenteroides, Fructobacillus durionis and Streptococcus mitis. Acetic acid bacteria included nine species of the genus Acetobacter with Acetobacter indonesiensis as predominant species. In addition, isolates of Gluconobacter oxydans and Gluconacetobacter saccharivorans were also identified. Intraspecies diversity was observed for some species of micro‐organisms including four genotypes for Acet. indonesiensis, three for Candida tropicalis and Lactobacillus fermentum and two each for S. cerevisiae, Trichosporon asahii, Candida pararugosa and Acetobacter tropicalis.

Conclusion

fermentation of palm sap from B. akeassii involved multi‐yeast‐LAB‐AAB cultures at genus, species and intraspecies level.

Significance and Impact of the Study

First study describing microbiological and physicochemical characteristics of palm wine from B. akeassii. Genotypic diversity of palm wine LAB and AAB not reported before is demonstrated and this constitutes valuable information for better understanding of the fermentation which can be used to improve the product quality and develop added value by‐products.  相似文献   

17.
This study was carried out using 155 monoconidial isolates collected from different areas of two major rice growing provinces in northern Iran, including 94 isolates from Guilan and 59 isolates from Mazandaran. Among 94 isolates from Guilan, 92 and two isolates recovered from rice and crabgrass (Digitaria sp.), respectively. All 61 rested isolates from Mazandaran were recovered from rice. All isolates were evaluated for in vitro sexual fertility and mating type status by pairing with Mat 1-1 and Mat 1-2 fertile standard hermaphrodite isolates including Br48 and Th12 (Mat 1-1) and KA9 and TH16 (Mat 1-2). Of 155 isolates, 98 (63.2%) were fertile and 57 (36.8%) were infertile and produced no perithecium when mated with standard isolates. Among 98 fertile isolates, 96 isolates were identified as Mat 1-1 and two isolates as Mat 1-2. All Mat 1-1 isolates were obtained from rice and two Mat 1-2 isolates obtained from crab grass. No Mat 1-2 isolate was identified from rice in this study. Both mating types were found in Guilan but all isolates recovered from Mazandaran were identified as Mat 1-1. Male fertility predominated in fertile Mat 1-1 and Mat 1-2 isolates from all sampling sites in northern Iran, and no female fertility was detected. This is the first report of existence of Mat 1-2 allele in Magnaporthe grisea population in Iran.  相似文献   

18.
The aim of this paper was to investigate the genetic and phenotypic characteristics of yeasts isolated from samples of grape musts collected from four different areas of Apulia region. The 68 yeast isolates were identified asSaccharomyces cerevisiae by PCR-RFLP of 5.8S-ITS region of the rRNA gene. Individual isolates were differentiated by RAPD-PCR and AFLP. The following oenological traits were studied: fermentation power, resistance to cycloheximide, alcohol and SO2, formation of SO2 and H2S, β-glucosidase activity, and production of biogenic amines and secondary compounds. Many phenotypes were common to several yeasts isolated from the four different areas, such as high SO2 resistance and fermentation power. In addition, someS. cerevisiae isolates showed a β-glucosidase activity and others had a high resistance to cycloheximide. All the strains formed biogenic amines. Solid Phase Microextraction was used to determine secondary compounds produced in wine by the single yeast cultures.  相似文献   

19.
The nutrient utilization pattern of Saccharomyces cerevisiae from palm wine was studied using tropical fruits as substrate. Starter cultures were prepared by growing 15-18 h old stock cultures of the yeast in successively larger bottles containing pasteurized fruit must. Microvinification, substrate utilization and assay of yeast activity were performed. Soluble solute (SS) content of the juices ranged from 10-18 Brix. Pinapple must had the highest SS content (18 Brix) while pawpaw had a low SS value of 10 Brix. These SS values were low compared to that of grape juice. The wines produced from the fruit must had percentage alcohol levels ranging from 10.6 to 12.6. Volatile activity ranged from 0.25 to 0.32 while crude protein values ranged from 0.58 to 0.68%. Palm wine yeast and all the other yeast strains fermented and utilized the fruit must for growth with specific growth rates ranging from 0.18 to 0.22. Sugar loss in Brix was gradual for all the fruit musts from 20.0-24.0 Brix to a range of 4.8 to 6.0 Brix. Pineapple was highly preferred for tropical wine making. Mango, cashew and pawpaw had equal ranking for commercial scale fermentation though more sugar will be needed to ameliorate cashew and pawpaw than mango juice. Palm wine yeast (OW-11) compared favourably with the other wine yeasts (CBS 8066 and ATCC 4126) both in nutrient utilization pattern and growth performance. A high degree of adaptability was observed in palm wine yeast recommands it for industrial wine production.  相似文献   

20.
A new method for transformation of Saccharomyces cerevisiae that allows selection was developed. As the frequency of spontaneous blasticidin S resistant mutants from diploid type yeast strain (X-2180AB) was 5.2×10–6, which was a thousandfold less than that from haploid type yeast strain (X-2180B), it was considered that the mechanism of spontaneous blasticidin S resistant mutations was related to recessive gene. Industrial yeasts, which were diploid, were transformed with blasticidin S deaminase gene from Aspergillus terreus to blasticidin S resistance. Expression of blasticidin S deaminase gene allowed selection of transformants from industrial yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号