首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathway of pulcherriminic acid synthesis in Bacillus subtilis strains AM and AM-L11 (a leucine-requiring auxotroph) was investigated. Determinations of radioactivity in pulcherriminic acid synthesized by cells growing in media containing (14)C-labeled amino acids indicated that B. subtilis produced pulcherriminic acid from l-leucine. The organism utilized the carbon skeletons of two l-leucine molecules to synthesize one molecule of pulcherriminic acid. Similar results were obtained with starved cell suspensions. Growing cells formed significant amounts of pulcherriminic acid only in media including a carbohydrate such as starch. However, carbohydrate carbon was not required for the synthesis of pulcherriminic acid molecules. Data obtained with cell suspensions supported the hypothesis that cyclo-l-leucyl-l-leucyl is an intermediate in pulcherriminic acid biosynthesis and indicated that molecular oxygen is required for the conversion of cyclo-l-leucyl-l-leucyl to pulcherriminic acid. A pathway for the synthesis of pulcherrimin from l-leucine in B. subtilis is proposed.  相似文献   

2.
We have identified carbon catabolite repression (CCR) as a regulator of amino acid permeases in Saccharomyces cerevisiae, elucidated the permeases regulated by CCR, and identified the mechanisms involved in amino acid permease regulation by CCR. Transport of l-arginine and l-leucine was increased by approximately 10-25-fold in yeast grown in carbon sources alternate to glucose, indicating regulation by CCR. In wild type yeast the uptake (pmol/10(6) cells/h), in glucose versus galactose medium, of l-[(14)C]arginine was (0.24 +/- 0.04 versus 6.11 +/- 0.42) and l-[(14)C]leucine was (0.30 +/- 0.02 versus 3.60 +/- 0.50). The increase in amino acid uptake was maintained when galactose was replaced with glycerol. Deletion of gap1Delta and agp1Delta from the wild type strain did not alter CCR induced increase in l-leucine uptake; however, deletion of further amino acid permeases reduced the increase in l-leucine uptake in the following manner: 36% (gnp1Delta), 62% (bap2Delta), 83% (Delta(bap2-tat1)). Direct immunofluorescence showed large increases in the expression of Gnp1 and Bap2 proteins when grown in galactose compared with glucose medium. By extending the functional genomic approach to include major nutritional transducers of CCR in yeast, we concluded that SNF/MIG, GCN, or PSK pathways were not involved in the regulation of amino acid permeases by CCR. Strikingly, the deletion of TOR1, which regulates cellular response to changes in nitrogen availability, from the wild type strain abolished the CCR-induced amino acid uptake. Our results provide novel insights into the regulation of yeast amino acid permeases and signaling mechanisms involved in this regulation.  相似文献   

3.
Abstract Five Clostridium butyricum strains of different origin were grown in trypticase-yeast extract-hemin medium with or without d-glucose (TGYH or TYH medium, respectively) and in a synthetic basal medium with d-glucose (BMG medium). 2-Hydroxy-4-methylpentanoic acid was detected by gas chromatography-mass spectrometry (GC-MS) for the five strains whether grown in TGYH or TYH medium (270 or 170 μM, respectively). In BMG medium supplemented with l-leucine (10 mM), the concentration of this metabolite was strongly increased (2.8 mM versus 10 μM in the control). After culture in TGYH or TYH medium supplemented with l-( methyl -2H3)leucine, 2-hydroxy-4-([2H3]methyl)pentanoic acid was detected by GC-MS. This observation demonstrates that C. butyricum is able to convert l-leucine into the corresponding 2-hydroxy acid and opens a new aspect in the study of C. butyricum metabolism.  相似文献   

4.
1. Explants of mammary gland from mid-pregnant rabbits were cultured in Medium 199 containing combinations of insulin, prolactin and cortisol. With hormone combinations which included prolactin, a sustained increase in the apparent rate of synthesis and in the amount of fatty acid synthetase was measurable immunologically. Maximum increase was produced with insulin, prolactin and cortisol present together. 2. With prolactin present alone, synthetase activity in the explants decreased to undetectable values after 1 day in culture, whereas the incorporation of l-[U-(14)C]leucine into immunodetectable material increased. Prolactin may therefore direct the synthesis of immunologically cross-reactive precursors of fatty acid synthetase which are enzymically inactive. 3. Culture with dibutyryl cyclic AMP plus theophylline in the presence of insulin, prolactin and cortisol delayed the increase in the rate of synthesis and accumulation of the synthetase. These compounds may also prevent the apparent decrease in the rate of degradation of the synthetase which occurs on day 2 of culture. 4. A large decrease in the apparent rate of degradation of the synthetase on day 2 of culture occurs during culture with hormone combinations which include prolactin. The protein obtained by centrifugation of explant homogenates for 6min at 14000g(av.) is degraded continuously throughout the culture period. 5. This decrease in the apparent rate of degradation of the synthetase was measured by radio-immunological precipitation. It is probably part of a regulated programme of enzyme degradation and not a reflexion of the reutilization of radioactive amino acids for the following reasons. (a) The calculated increase in the amount of the synthetase in explants on day 2 of culture with insulin, prolactin and cortisol was approximately equal to the measured increase of the enzyme complex which accumulates in the explants. This suggests little or no enzyme degradation has occurred. (b) Explants were cultured for 24h with insulin, prolactin and cortisol. They were then incubated with l-[U-(14)C]leucine, washed and incubated again for up to 4(1/2)h. l-[U-(14)C]Leucine rapidly equilibrated with the intracellular amino acid pool. Within 10min of incubation after washing explants to remove endogenous l-[U-(14)C]leucine the previously linear incorporation of l-[U-(14)C]-leucine into total explant protein ceased. This suggests that protein is synthesized from an amino acid pool which rapidly equilibrates with amino acids in the culture medium. (c) Explants were cultured for 24h as described in (b) but after washing they were cultured with insulin, prolactin and cortisol for 24h. Approx. 90% of the radioactivity lost from the ;free' intracellular amino acid pool and from amino acids derived from the degradation of explant protein in this period was detected in the culture medium. This suggests that the ;free' intracellular amino acids and amino acids derived from protein degradation can equilibrate with amino acids in the medium. A residual ;free' radioactive amino acid pool was present in the tissue. (d) Casein represents approx. 20% of the protein synthesized after 1 day in culture with insulin, prolactin and cortisol. Histological evidence suggests that on day 2 of culture, casein is unlikely to be degraded in the tissue. No increase in the radioactivity incorporated into casein can be measured in the 23h after incubation of explants with l-[U-(14)C]leucine as described in (b). This suggests that the incorporation of radioactivity into proteins during culture after incubation with l-[U-(14)C]leucine is minimal. (e) Inhibition of protein synthesis in explants by cycloheximide after incubation with l-[U-(14)C]leucine does not reveal a latent continuous degradation of fatty acid synthetase on day 2 of culture which might have been masked by the high rates of protein synthesis and therefore the accumulation of the enzyme. 6. The conclusion is discussed that there is a real decrease (or even cessation) in the rate of degradation of fatty acid synthetase during the period when the enzyme accumulates in explants cultured with hormone combinations which contain prolactin.  相似文献   

5.
The first enzyme in the biosynthesis of leucine in yeast, alpha-isopropylmalate synthetase, is inhibited by l-leucine. In a mutant resistant to the analogue 5',5',5'-trifluoroleucine, the enzyme is markedly resistant to inhibition by l-leucine. Growth ing the presence of exogenous l-leucine results in repression of the second and third enzymes of the pathway. The first enzyme is not repressed unless both l-leucine and l-threonine are supplied in the medium. Comparison of levels of the remaining two enzymes in leucine auxotrophs grown under conditions of leucine excess and leucine limitation reveals deviations from the wild-type derepression pattern in some mutants. In some, repression of the synthetase by leucine alone was observed. In others, the repressibility of the dehydrogenase was lost. It is unlikely that these deviations were due to the same primary mutational event that caused leucine auxotrophy. No mutants were found in which an altered gene was recognized to be clearly responsible for the level of the leucine-forming enzymes.  相似文献   

6.
1. At 28 degrees C, synthesis of protein cyst coat in ciliates of Colpoda steinii is induced by washing with water and, as judged by glutamic acid assays and incorporation studies with l-[U-(14)C]leucine, starts about 30min after the cells have stopped swimming and is largely complete 90min later. During this time up to 70% of the protein synthesized by the cell is coat protein. 2. When cells were placed in l-[U-(14)C]leucine at low concentrations (0.25-0.76mm) during the period of coat synthesis there was no lag in uptake. Only a small proportion of the leucine incorporated into the coat was from the external substrate, implying that the rate of radioactive isotope incorporation measured the rate of transport of amino acid into the cell. Transport of l-[U-(14)C]leucine into the cell was markedly stimulated by l-glutamic acid and l-lysine. 3. When cells were placed in l-[U-(14)C]leucine at high concentrations (38mm) the rate of incorporation was considered to measure the rate of protein synthesis, but because the latter may have been affected by substrate it is concluded that such measurements are of doubtful value.  相似文献   

7.
Some properties of a d-glutamic acid auxotroph of Escherichia coli B were studied. The mutant cells lysed in the absence of d-glutamic acid. Murein synthesis was impaired, accompanied by accumulation of uridine-5'-diphosphate-N-acetyl-muramyl-l-alanine (UDP-MurNac-l-Ala), as was shown by incubation of the mutant cells in a cell wall medium containing l-[(14)C]alanine. After incubation of the parental strain in a cell wall medium containing l-[(14)C]glutamic acid, the acid-precipitable radioactivity was lysozyme degradable to a large extent. Radioactive UDP-MurNac-pentapeptide was isolated from the l-[(14)C]glutamic acid-labeled parental cells. After hydrolysis, the label was exclusively present in glutamic acid, the majority of which had the stereo-isomeric d-configuration. Compared to the parent the mutant incorporated less l-[(14)C]glutamic acid from the wall medium into acid-precipitable material. Lysozyme degraded a smaller percentage of the acid-precipitable material of the mutant than of that of the parent. No radioactive uridine nucleotide precursors could be isolated from the mutant under these conditions. Attempts to identify the enzymatic defect in this mutant were not successful. The activity of UDP-MurNac-l-Ala:d-glutamic acid ligase (ADP; EC 6.3.2.9) (d-glutamic acid adding enzyme) is not affected by the mutation. Possible pathways for d-glutamic acid biosynthesis in E. coli B are discussed.  相似文献   

8.
Iida K  Kajiwara M 《The FEBS journal》2007,274(19):5090-5095
The metabolic pathways leading from l-[2-13C]aspartic acid, [2-13C]glycine and l-[methyl-13C]methionine to vitamin B12 were investigated, focusing on the biosynthetic pathways leading to the aminopropanol moiety of vitamin B12 and on the role of the Shemin pathway leading to delta-aminolevulinic acid (a biosynthetic intermediate of tetrapyrrole), by means of feeding experiments with Propionibacterium shermanii in combination with 13C-NMR spectroscopy. The 13C-methylene carbons of l-[2-(13)C]aspartic acid, which is transformed to [2-13C]glycine via l-[2-13C]threonine, and [2-13C]glycine added to the culture medium served mainly to enrich the seven methyl carbons of the corrin ring through C-methylation by S-adenosyl-l-[methyl-13C]methionine derived from catabolically generated l-[methyl-13C]methionine in the presence of tetrahydrofolic acid. The results indicate that the catabolism of these amino acids predominates over pathways leading to (2R)-1-amino-2-propanol or delta-aminolevulinic acid in P. shermanii. Feeding of l-[methyl-13C]methionine efficiently enriched all seven methyl carbons. In the cases of [2-13C]glycine and l-[methyl-13C]methionine, the 13C-enrichment ratio of the methyl carbon at C-25 (the site of the first C-methylation) was less than those of the other six methyl carbons, probably due to the influence of endogenous d-glucose in P. shermanii. The almost identical 13C-enrichment ratios of the other six methyl carbons indicated that these C-methylations during vitamin B12 biosynthesis were completed before the amino acids were completely consumed. However, in the case of l-[2-13C]aspartic acid, the 13C-enrichment ratios of five methyl carbons were low and similar, whereas the last two sites of C-methylation (C-53 and C-35) were not labeled, presumably because of complete consumption of the smaller amount of added label. The ratios of 13C-incorporation into the seven methyl carbons are influenced by the conditions of amino acid feeding experiments in a manner that is dependent upon the order of C-methylation in the corrin ring of vitamin B12.  相似文献   

9.
1. Bacilysin, a peptide which yields l-alanine and l-tyrosine on acid hydrolysis, was produced by a strain of Bacillus subtilis (A 14) in a chemically defined medium containing glucose, ammonium acetate or ammonium chloride, potassium phosphate and other inorganic salts, and ferric citrate. 2. Under the conditions used growth was diphasic. Bacilysin was formed during the second phase of slower growth, and there was little production during the stationary phase. Nevertheless, bacilysin production occurred when protein synthesis was inhibited by chloramphenicol. It thus appears that there is no obligatory coupling of protein synthesis and bacilysin synthesis. 3. When dl-[1-(14)C]alanine was added to a growing culture of B. subtilis, (14)C was incorporated into bacilysin, which contains an N-terminal alanine residue. 4. Under similar conditions virtually no (14)C was incorporated into bacilysin from dl-[2-(14)C]tyrosine, l-[U-(14)C]tyrosine or [1-(14)C]acetate, although these compounds were used by the cell for the biosynthesis of other substances. These results indicate that neither tyrosine nor acetate is a precursor of the fragment of bacilysin which yields tyrosine on hydrolysis with hot 6n-hydrochloric acid. 5. The tyrosine-yielding fragment of bacilysin was labelled with (14)C from [1,6-ring-(14)C(2)]shikimic acid. The biosynthesis of bacilysin thus appears to involve a diversion from the pathway leading to aromatic amino acids at the shikimic acid stage, or a subsequent one.  相似文献   

10.
Cephalosporin production by a highly productive Cephalosporium acremonium strain was carried out and optimized by fed-batch operation in a 40 l stirred tank reactor using a complex medium containing 30-120 g l-1 peanut flour. The concentrations of cephalosporin C (CPC) and its precursors: penicillin N (PEN N), deacetoxy cephalosporin C (DAOC), and deacetyl cephalosporin C (DAC) were monitored with an on-line HPLC. The concentrations of amino acids valine (VAL), cysteine (CYS), alpha-amino adipic acid (alpha-AAA), the dipeptide alpha-amino-adipyl-cysteine (AC), and the tripeptide alpha-amino-adipyl-cysteinyl-valine (ACV), were determined off-line by HPLC. The RNA content and dry weight of the sediment as well as the oxygen transfer rate (OTR) and the CO2 production rate (CPR) were used to calculate the cell mass concentration (X). The influences of peanut flour (PF) and the on-line monitored and controlled medium components: glucose (GLU), phosphate, methionine (MET) as well as the dissolved oxygen (DOC) on the cell growth, the product formation, and the pathway of cephalosporin C biosynthesis were investigated and evaluated. When the glucose fed-batch cycle was optimized and oxygen transfer limitation was avoided (DOC greater than 20% of the saturation value), high process performance (103.5 g l-1 X, 11.84 g l-1 CPC, a maximum CPC productivity of 118 mg l-1 h-1, and the whole concentration of the beta-lactam antibiotics CPC, DAC, DAOC, PEN N 17.34 g l-1) was achieved by using 100 g l-1 PF in the medium with the optimum concentration of phosphate (260-270 mg l-1) and a low glucose concentration (less than 0.5 g l-1). The cultivations with different medium concentrations demonstrated that the product formation was directly proportional to the cell mass concentration. On the average, the cell mass-based yield coefficient of CPC: YCPC/X amounted to 0.115 g CPC per g cell mass.  相似文献   

11.
Analysis by gas chromatography-mass spectrometry (GC-MS) of 24-h cultures of Clostridium butyricum type strain in synthetic BMG medium supplemented with various 2-amino acids (10 mM) revealed the presence of the corresponding 2-hydroxy acids. C. butyricum was able to bioconvert l-valine, dl-norvaline, l-leucine, dl-norleucine, l-methionine and l-phenylalanine as well as unusual 2-amino acids, i.e., l-2-aminobutyric acid, l-2-amino-4-pentenoic acid, dl-2-aminooctanoic acid, and dl-2-amino-4-phenylbutanoic acid. l-Isoleucine and cycloleucine were not converted into their corresponding 2-hydroxy acids. The bioconversion rate was maximal with dl-norvaline (6.2%). Chiral GC analysis demonstrated that only d-2-hydroxy-4-methylpentanoic acid is formed from l-leucine, indicating that the bioconversion is stereospecific, with inversion of configuration. d-Leucine and d-methionine were also converted to the corresponding 2-hydroxy acids. This observation opens new aspects in the study of C. butyricum and raises questions about the amino acid metabolism by this species.  相似文献   

12.
The effects of some local anesthetics on plasma protein secretion by rat liver slices have been studied and have been compared with those of colchicine. Rat liver slices were pulse-labelled with l-[14C]leucine for 9 min at 37°C, collected on filter paper, washed with non-radioactive leucine and reincubated in the presence or absence of the drug to be tested. The radioactive plasma proteins produced were obtained by immunoprecipitation from either the chase medium or from the washed slices. Chlorpomazine, (3 · 10?5 M), dibucaine (10?5 M), lidocaine (10?3 M) and procaine (5 · 10?5 M) inhibited both the synthesis and secretion of plasma protein but did not affect the uptake of l-leucine into the slices nor the incorporation of phosphate into intracellular nucleotide phosphates or into phopholipids. The inhibition of secretion elicited by these drugs is probably not due to the inhibition of protein synthesis since cycloheximide, when added to the chase medium at a concentration which completely inhibits protein synthesis, did not inhibit plasma protein secretion, while cycloheximide plus procaine did inhibit secretion and also caused a retention of non-secreted plasma proteins within the slices. Unlike colchicine, howover, procaine did not cause the retained plasma proteins to accumulate in Goli-derived secretory vesicles, but showed a more general effect causing a distribution among several cell fractions.  相似文献   

13.
Cephalosporin C was produced by a highly productive strain of Cephalosporium acremonium under industrial production conditions by fed-batch cultivation in a 40-l stirred-tank reactor using a complex medium containing 50 g l-1 peanut flour. The influence of dissolved oxygen concentration (pO2, DOC), which was maintained at different constant levels between 5 and 40% of its saturation value, during the production phase by means of a parameter-adaptive pO2-controller, on the cephalosporin C biosynthesis, was investigated. The concentrations of cephalosporin C (CPC) and its precursors penicillin N (PEN N), deacetoxycephalosporin C (DAOC), and deacetylcephalosporin C (DAC) were monitored by on-line HPLC. The concentrations of amino acids, valine (VAL), cysteine (CYS), alpha-amino-adipic acid (alpha-AAA), the dipeptide alpha-amino-adipyl-cysteine (AC), and the tripeptide alpha-amino-adipyl-cysteinyl-valine (ACV) were determined by off-line HPLC. By reducing the pO2 in the production phase from 40 to 5% of its saturation value, the CPC concentration diminished from 7.2 to 1.1 g l-1 and the PEN N concentration increased from 2.57 to 7.65 g l-1. The DAC concentration also dropped from 3.13 to 0.42 g l-1; however, the DAOC concentration was less influenced. The concentrations of AC and ACV were also less affected. The small DOC did not lead to an accumulation of the intermediate AC and ACV during the production phase. With increasing DOC in the range of 5-20%, the maximal specific production rate, the cell mass concentration-based and the substrate-based yield coefficients for CPC increased almost linearly, and fell back for PEN N.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Regulation of the levels of the five enzymes required for the biosynthesis of isoleucine and valine was studied in a Saccharomyces sp. When a mixture of isoleucine, valine, and leucine was added to the medium, the enzymes in the wild-type strain were repressed from about 30% (transaminase B) to about 90% (acetohydroxy acid synthetase) relative to the level in minimal medium-grown cells. Repression was also observed when threonine replaced isoleucine in the mixture but not when it replaced the other two amino acids. Significant derepression relative to the level in minimal-grown cells was not obtained by growing suitably blocked auxotrophs on medium containing limiting amounts of valine, isoleucine, or leucine.  相似文献   

16.
(1) N-Ethylmaleimide (a penetrating SH- reagent) inactivated l-[14C]leucine entrance (binding and translocation) into Saccharomyces cerevisiae, the extent of inhibition depending on the time of preincubation with N-ethylmaleimide, N-ethylmaleimide concentration, the amino acid external and internal concentration, and the energization state of the yeast cells. With d-glucose-energized yeast, N-ethylmaleimide inhibited l-[14C]leucine entrance in all the assayed experimental conditions, but with starved yeast and low (0.1 mM) amino acid concentration, it did not inhibit l-[14C]leucine binding, except when the cells were preincubated with l-leucine. With the rho? respiratory-deficient mutant (energized cells), N-ethylmaleimide inhibited l[14C]leucine entrance as with the energized wild-type, though to a lesser extent. (2) Analysis of the N-ethylmaleimide effect as a function of l-[14C]leucine concentration showed a significant decrease of Jmax values of the high- (S1) and low- (S2) affinity amino acid transport systems, but KT values were not significantly modified. (3) When assayed in the presence of d-glucose, N-ethylmaleimide inhibition of d-glucose uptake and respiration contributed significantly to inactivation of l-[14C]leucine entrance. Pretreatment of yeast cells with 2,4-dinitrophenol enhanced the effect of l-[14C]leucine binding and translocation. (4) Bromoacetylsulfanilic acid and bromoacetylaminoisophthalic acid, two non-penetrating SH- reagents, did not inactivate l-[14C]leucine entrance, while p-chloromercuribenzoate, a slowly penetrating SH- reagent, inactivated it to a limited extent. When compared with the effect of N-ethylmaleimide, these negative results indicate that thiol groups of the l-[14C]leucine carrier were not exposed on the outer surface of the yeast cell permeability barrier.  相似文献   

17.
Study of the biosynthesis of NADH: rubredoxin oxidoreductase in resting cells of Clostridium acetobutylicum shows that this enzyme is synthesized at a maximal rate in the presence of acetic acid at a concentration of 3 g . l-1 and at pH 4.8. Protons do not play any role in this biosynthesis since no induction is observed in a medium without acetate for the same values of pH. Butyric acid at a concentration of 0.5 g . l-1 gives 50% induction and formic acid, isobutyric acid and propionic acid have no inductive action on NADH: rubredoxin oxidoreductase. These results are confirmed by studies using a dialysis bag. Only a culture against acetic acid at an initial concentration of 2 g . l-1 gives maximal biosynthesis of the enzyme, whereas a culture in which all products of metabolism are eliminated gives an activity which is 80% lower.  相似文献   

18.
Sphingolipid metabolism in Bacteroideaceae.   总被引:6,自引:0,他引:6  
The lipid composition of the anaerobic Bacteroides thetaiotaomikron has been analyzed. Sphingomyelin, ceramide phosphinicoethanolamine, free even-numbered and branched chain sphingosine bases and ceramide represented about 50% of the total lipid extract. The main ester phospholipid was phosphatidylethanolamine. The alkali-stable sphingophospholipids were predominantly N-acylated with 3-hydroxypalmitic acid, whereas the ester phospholipids are preferentially substituted with normal even and odd-numbered and branched-chain fatty acids. When Bacteroides was grown in a medium supplemented with labelled palmitic acid, this fatty acid was utilized for acylation reactions and to a large extent for the de novo synthesis of sphinganine. This long-chain base was incorporated into the sphingolipids and was also present in free form. The 3-hydroxypalmitic acid present in sphingolipids is not derived from palmitic acid, since labelled palmitate did not serve as a precursor. Free sphinganine added to the culture medium was also utilized efficiently for the biosynthesis of the sphingolipids by growing Bacteroides cultures. The 3H/14C ratio in sphingomyelin and ceramide phosphinicoethanolamine is the same, when [1-14C]palmitic acid and [3-3H]sphinganine serve as precursors. Sphingomyelin, which is usually only present in higher animals, is synthesized de novo in this Bacteroides strain.  相似文献   

19.
A mutant of Escherichia coli K-12 was examined which has growth medium-dependent lysyl-transfer ribonucleic acid (tRNA) ligase activity. In minimal medium or 0.5% yeast extract, the activity of the enzyme in the mutant strain was 5 to 10% of wild type. However, when the mutant was grown in a highly enriched medium, such as AC broth (Difco), the activity of the mutant ligase increased 10- to 20-fold. We found that the supplementation of 0.5% yeast extract by l-alanine plus d-fructose replaces the need for the highly enriched medium. Fructose plus l-leucine and fructose plus l-alpha-amino-n-butyric acid were also stimulatory, but not as effective as fructose and alanine. With minimal medium, a combination of carbohydrate (fructose or glucose) plus alanine and leucine was required to replace the enriched medium. The most effective combination was fructose, glucose, alanine, and leucine. Lysyl-tRNA ligase was stimulated 1.5 to 2-fold in the wild-type strain or Hfr H (Hayes) by fructose plus alanine when these strains were cultured in 0.5% yeast extract. Experiments employing the combined technique of density labeling with D(2)O and isopycnic centrifugation in cesium chloride indicated that the increased activity of lysyl-tRNA ligase observed in AC broth or in the presence of fructose, glucose, alanine, and leucine is due to the synthesis of new enzyme.  相似文献   

20.
Melphalan, l-phenylalanine mustard, is transported by the L1210 cell through carriers of the leucine (L) type. Its initial rate of transport is inhibited by both l-leucine, a naturally occurring L system amino acid and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH), a synthetic amino acid which is transported by the L system in the Ehrlich ascites tumor cell. Both amino acids inhibited melphalan transport comparably in sodium-free medium. However, BCH, in medium containing sodium, was unable to reduce a component of melphalan transport which was readily inhibited by leucine but not by α-aminoisobutyric acid. Inhibition analysis indicated that leucine competes with BCH for transport but that a portion of leucine transport is not readily inhibited by BCH. These results suggest that in the L1210 cell melphalan is transported equally by a BCH-sensitive, sodium-independent L system and a BCH-insensitive, sodium-dependent L system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号