首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of chronic lymphocytic leukemia (CLL) patients with standard dose infusion of rituximab (RTX), 375 mg/m2, induces clearance of malignant cells from peripheral blood after infusion of 30 mg of RTX. After completion of the full RTX infusion, substantial recrudescence of CLL cells occurs, and these cells have lost > 90% of CD20. To gain insight into mechanism(s) of CD20 loss, we investigated the hypothesis that thrice-weekly low-dose RTX (20 or 60 mg/m2) treatment for CLL over 4 wk would preserve CD20 and enhance leukemic cell clearance. During initial infusions in all 12 patients, the first 30 mg of RTX promoted clearance of > 75% leukemic cells. Four of six patients receiving 20 mg/m2 RTX retained > or = 50% CD20, and additional RTX infusions promoted further cell clearance. However, four of six patients receiving 60 mg/m2 had CD20 levels < 20% baseline 2 days after initial infusions, and additional RTX infusions were less effective, presumably due to epitope loss. Our results suggest that when a threshold RTX dose is exceeded, recrudesced RTX-opsonized cells are not cleared, due to saturation of the mononuclear phagocytic system, but instead are shaved of RTX-CD20 complexes by acceptor cells. Thrice-weekly low-dose RTX may promote enhanced clearance of circulating CLL cells by preserving CD20.  相似文献   

2.
Treatment of chronic lymphocytic leukemia patients with anti-CD20 mAb rituximab (RTX) leads to substantial CD20 loss on circulating malignant B cells soon after completion of the RTX infusion. This CD20 loss, which we term shaving, can compromise the therapeutic efficacy of RTX, and in vitro models reveal that shaving is mediated by effector cells which express Fc gammaRI. THP-1 monocytes and PBMC promote shaving, but PBMC also kill antibody-opsonized cells by antibody-dependent cellular cytotoxicity (ADCC), a reaction generally considered to be due to NK cells. We hypothesized that within PBMC, monocytes and NK cells would have substantially different and competing activities with respect ADCC or shaving, thereby either enhancing or inhibiting the therapeutic action of RTX. We measured ADCC and RTX removal from RTX-opsonized Daudi cells promoted by PBMC, or mediated by NK cells and monocytes. NK cells take up RTX and CD20 from RTX-opsonized B cells, and mediate ADCC. PBMC depleted of NK cells show little ADCC activity, whereas PBMC depleted of monocytes have greater ADCC than the PBMC. Pre-treatment of RTX-opsonized B cells with THP-1 cells or monocytes suppresses NK cell-mediated ADCC, and blockade of Fc gammaRI on monocytes or THP-1 cells abrogates their ability to suppress ADCC. Our results indicate NK cells are the principal cells in PBMC that kill RTX-opsonized B cells, and that monocytes can suppress ADCC by promoting shaving. These results suggest that RTX-based immunotherapy of cancer may be enhanced based on paradigms which include infusion of compatible NK cells and inhibition of monocyte shaving activity.  相似文献   

3.
We previously reported that 1 h after infusion of CD20 mAb rituximab in patients with chronic lymphocytic leukemia (CLL), >80% of CD20 was removed from circulating B cells, and we replicated this finding, based on in vitro models. This reaction occurs via an endocytic process called shaving/trogocytosis, mediated by FcγR on acceptor cells including monocytes/macrophages, which remove and internalize rituximab-CD20 immune complexes from B cells. Beers et al. reported that CD20 mAb-induced antigenic modulation occurs as a result of internalization of B cell-bound mAb-CD20 complexes by the B cells themselves, with internalization of ~40% observed after 2 h at 37°C. These findings raise fundamental questions regarding the relative importance of shaving versus internalization in promoting CD20 loss and have substantial implications for the design of mAb-based cancer therapies. Therefore, we performed direct comparisons, based on flow cytometry, to determine the relative rates and extent of shaving versus internalization. B cells, from cell lines, from patients with CLL, and from normal donors, were opsonized with CD20 mAbs rituximab or ofatumumab and incubated for varying times and then reacted with acceptor THP-1 monocytes to promote shaving. We find that shaving induces considerably greater loss of CD20 and bound mAb from opsonized B cells in much shorter time periods (75-90% in <45 min) than is observed for internalization. Both shaving/trogocytosis and internalization could contribute to CD20 loss when CLL patients receive rituximab therapy, but shaving should occur more rapidly and is most likely to be the key mechanism of CD20 loss.  相似文献   

4.
Clinical investigations have revealed that infusion of immunotherapeutic mAbs directed to normal or tumor cells can lead to loss of targeted epitopes, a phenomenon called antigenic modulation. Recently, we reported that rituximab treatment of chronic lymphocytic leukemia patients induced substantial loss of CD20 on B cells found in the circulation after rituximab infusion, when rituximab plasma concentrations were high. Such antigenic modulation can severely compromise therapeutic efficacy, and we postulated that B cells had been stripped (shaved) of the rituximab/CD20 complex by monocytes or macrophages in a reaction mediated by FcgammaR. We developed an in vitro model to replicate this in vivo shaving process, based on reacting rituximab-opsonized CD20(+) cells with acceptor THP-1 monocytes. After 45 min at 37 degrees C, rituximab and CD20 are removed from opsonized cells, and both are demonstrable on acceptor THP-1 cells. The reaction occurs equally well in the presence and absence of normal human serum, and monocytes isolated from peripheral blood also promote shaving of CD20 from rituximab-opsonized cells. Tests with inhibitors and use of F(ab')(2) of rituximab indicate transfer of rituximab/CD20 complexes to THP-1 cells is mediated by FcgammaR. Antigenic modulation described in previous reports may have been mediated by such shaving, and our findings may have profound implications for the use of mAbs in the immunotherapy of cancer.  相似文献   

5.
Binding of the CD20 mAb rituximab (RTX) to B lymphocytes in normal human serum (NHS) activates complement (C) and promotes C3b deposition on or in close proximity to cell-bound RTX. Based on spinning disk confocal microscopy analyses, we report the first real-time visualization of C3b deposition and C-mediated killing of RTX-opsonized B cells. C activation by RTX-opsonized Daudi B cells induces rapid membrane blebbing and generation of long, thin structures protruding from cell surfaces, which we call streamers. Ofatumumab, a unique mAb that targets a distinct binding site (the small loop epitope) of the CD20 Ag, induces more rapid killing and streaming on Daudi cells than RTX. In contrast to RTX, ofatumumab promotes streamer formation and killing of ARH77 cells and primary B cells from patients with chronic lymphocytic leukemia. Generation of streamers requires C activation; no streaming occurs in media, NHS-EDTA, or in sera depleted of C5 or C9. Streamers can be visualized in bright field by phase imaging, and fluorescence-staining patterns indicate they contain membrane lipids and polymerized actin. Streaming also occurs if cells are reacted in medium with bee venom melittin, which penetrates cells and forms membrane pores in a manner similar to the membrane-attack complex of C. Structures similar to streamers are demonstrable when Ab-opsonized sheep erythrocytes (non-nucleated cells) are reacted with NHS. Taken together, our findings indicate that the membrane-attack complex is a key mediator of streaming. Streamer formation may, thus, represent a membrane structural change that can occur shortly before complement-induced cell death.  相似文献   

6.
The CD20 mAb ofatumumab (OFA) induces complement-mediated lysis of B cells. In an investigator-initiated phase II trial of OFA plus chemotherapy for chronic lymphocytic leukemia (CLL), OFA treatment promoted partial CLL B cell depletion that coincided with reduced complement titers. Remaining CLL B cells circulated with bound OFA and covalently bound complement breakdown product C3d, indicative of ongoing complement activation. Presumably, neither complement- nor effector cell-based mechanisms were sufficiently robust to clear these remaining B cells. Instead, almost all of the bound OFA and CD20 was removed from the cells, in accordance with previous clinical studies that demonstrated comparable loss of CD20 from B cells after treatment of CLL patients with rituximab. In vitro experiments with OFA and rituximab addressing these observations suggest that host effector mechanisms that support mAb-mediated lysis and tumor cell clearance are finite, and they can be saturated or exhausted at high B cell burdens, particularly at high mAb concentrations. Interestingly, only a fraction of available complement was required to kill cells with CD20 mAbs, and killing could be tuned by titrating the mAb concentration. Consequently, maximal B cell killing of an initial and secondary B cell challenge was achieved with intermediate mAb concentrations, whereas high concentrations promoted lower overall killing. Therefore, mAb therapies that rely substantially on effector mechanisms subject to exhaustion, including complement, may benefit from lower, more frequent dosing schemes optimized to sustain and maximize killing by cytotoxic immune effector systems.  相似文献   

7.
8.
Complement-dependent cytotoxicity (CDC) is a key mechanism of Rituximab (RTX) action in killing non-Hodgkins lymphoma (NHL) cells both in vitro and probably in vivo. A DeImmunized, mouse/human chimeric monoclonal antibody (Mab), H17, specific for cell-associated complement C3 cleavage products, C3b and iC3b, was generated to enhance RTX-mediated killing of target cells by CDC. When NHL cell lines were treated with RTX and H17 in the presence of complement for 1 h, there was 40–70% more cell death than that observed with RTX alone. The enhancing effect of H17 was also seen over longer treatment periods. H17 was tested ex vivo against primary cells from NHL and chronic lymphocytic leukemia (CLL) patients. In RTX-resistant NHL samples, H17 enhanced RTX-mediated killing; in the remaining samples RTX + complement alone promoted more than 80% killing, and no significant enhancement was observed. The H17 antibody also increased RTX-mediated killing in four out of nine CLL samples. H17 may have therapeutic applications in NHL and CLL treatment as an adjunctive therapy to RTX. It might also enhance the activity of other therapeutic antibodies that work through CDC.  相似文献   

9.
10.
Chronic lymphocytic leukemia (CLL) results in the accumulation of B cells, presumably reflecting the selection of malignant cell precursors with Ag combined with complex alterations in protein activity. Repeated BCR stimulation of normal B cells leads to anergy and CD5 expression, both of which are features of CLL. Because CD5 is phosphorylated on tyrosine following BCR engagement and negatively regulates BCR signaling in normal B cells, we investigated its phosphorylation status and found it to be naturally phosphorylated on tyrosine but not on serine residues in CLL samples. To analyze the role of CD5, we established a B cell line in which CD5 is phosphorylated. Gene profiling of vector vs CD5-transfected B cells pointed out gene groups whose expression was enhanced: Apoptosis inhibitors (BCL2), NF-kappaB (RELB, BCL3), Wnt, TGFbeta, VEGF, MAPKs, Stats, cytokines, chemokines (IL-10, IL-10R, IL-2R, CCL-3, CCL-4, and CCR7), TLR-9, and the surface Ags CD52, CD54, CD70, and CD72. Most of these gene groups are strongly expressed in CLL B cells as compared with normal B cells. Unexpectedly, metabolic pathways, namely cholesterol synthesis and adipogenesis, are also enhanced by CD5. Conversely, CD5 inhibited genes involved in RNA splicing and processing, ribosome biogenesis, proteasome, and CD80 and CD86 Ags, whose expression is low in CLL. Comparison of CD5- vs tailless CD5-transfected cells further demonstrated the role of CD5 phosphorylation in the regulation of selected genes. These results support a model where CLL cells are chronically stimulated, leading to CD5 activation and cell survival. In addition to CD5 itself, we point to several CD5-induced genes as potential therapeutic targets.  相似文献   

11.
《MABS-AUSTIN》2013,5(1):35-41
CD4+ CD25+ regulatory T cells are expanded in solid and hematological malignancies including Chronic Lymphocytic Leukemia (CLL). Several cytokines and co-stimulatory molecules are required for generation, survival and maintenance of their suppressive effect. We and others have shown direct cytotoxic effect of the novel common gamma chain cytokine interleukin- 21 (IL-21) on primary B cells from CLL patients. Since members of this family of cytokines are known to exhibit their effects on diverse immune cells, we have examined the effects of IL-21 on CLL patient derived regulatory T cell induction, expansion and the inhibitory effect on natural killer cells in vitro. We demonstrate here the expression of IL-21 receptor in CD4+CD25High regulatory cells from CLL patients. In contrast to IL-2, the IL-21 cytokine failed to mediate expansion of regulatory T cells or induced expression of Foxp3 in CD4+CD25Intermediate or CD4+CD25Dim/- T cells in whole blood derived from CLL patients. Interestingly, in contrast to their differential effects on expansion of the CD4+CD25+Foxp3+T cells, IL-2 and IL-21 exhibited a redundant role in T-reg mediated suppression of NK cell mediated antibody dependent cytotoxicity function. Given the infusion related toxicities and pro-survival effect of IL-2 in CLL, these studies provide a rationale to explore IL-21 as an alternate gamma chain cytokine in CLL therapy.  相似文献   

12.
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of leukemic B cells concomitant with immunological abnormalities and depressed immune responses. The T cell abnormalities found in CLL patients are thought to increase the risk of infection and hamper immune recognition and elimination of leukemic cells. We evaluated whether providing signals through CD3 and CD28 would correct some of these T cell defects. PBMC were incubated with anti-CD3 and anti-CD28 mAbs conjugated to superparamagnetic beads for 12-14 days. This resulted in a 1400-fold increase in T cell numbers. Activated T cells expressed high levels of CD25, CD54, CD137, and CD154, and produced IFN-gamma, TNF-alpha, and GM-CSF. The mean T cell composition of cultures increased from approximately 6% to >90% and leukemic B cells decreased from a mean of approximately 85% to 0.1% or less. Leukemic B cells up-regulated expression of CD54, CD80, CD86, and CD95. Receptor up-regulation required direct cell contact with the activated T cells and could be blocked with anti-CD154 mAb, suggesting that the CD40-CD40L pathway helped mediate these effects. Poor T cell responses to allostimulation were corrected by the activation and expansion process. The skewing in the TCR repertoire returned to normal, or near normal following the culture process in eight of nine patients with abnormal TCR repertoires. Activated T cells had potent in vitro antileukemic effects in contrast to nonactivated T cells. Based upon these findings, a clinical trial has been initiated to test the potential therapeutic effects of T cells activated using this approach in patients with CLL.  相似文献   

13.
The innate ability of B lymphoma cells to escape control by tumor-reactive T cells must be overcome to develop effective immunotherapies for these diseases. Because signals from both the innate and adaptive immune systems direct the acquisition of strong immunogenicity by professional APCs, the effects of IL-2 and the TLR-7 agonist, S28690, on the immunogenic properties of chronic lymphocytic leukemia (CLL) B cells were studied. IL-2 with S28690 caused CLL cells to proliferate and increased their expression of B7-family members, production of TNF-alpha and IL-10, and levels of tyrosine-phosphorylated STAT-1 and STAT-3 proteins. S28690 increased CD25 expression on CLL cells and sensitized them to IL-2 signaling. However, IL-2 did not change TLR-7 expression or signaling in CLL cells. The ability to stimulate T cell proliferation required additional activation of protein kinase C, which inhibited tumor cell proliferation, "switched off" IL-10 production, and caused essentially all CLL cells (regardless of clinical stage) to acquire a CD83(high)CD80(high)CD86(high)CD54(high) surface phenotype marked by the activation of STAT-1 without STAT-3. These findings suggest that TLR-7 "licenses" human B cells to respond to cytokines of the adaptive immune system (such as IL-2) and provide a strategy to increase the immunogenicity of lymphoma cells for therapeutic purposes.  相似文献   

14.
The most prevalent severe manifestation of systemic lupus erythematosus is nephritis, which is characterized by immune complex deposition, inflammation, and scarring in glomeruli and the tubulointerstitium. Numerous studies indicated that glomerulonephritis results from a systemic break in B cell tolerance, resulting in the local deposition of immune complexes containing Abs reactive with ubiquitous self-Ags. However, the pathogenesis of systemic lupus erythematosus tubulointerstitial disease is not known. In this article, we demonstrate that in more than half of a cohort of 68 lupus nephritis biopsies, the tubulointerstitial infiltrate was organized into well-circumscribed T:B cell aggregates or germinal centers (GCs) containing follicular dendritic cells. Sampling of the in situ-expressed Ig repertoire revealed that both histological patterns were associated with intrarenal B cell clonal expansion and ongoing somatic hypermutation. However, in the GC histology, the proliferating cells were CD138(-)CD20(+) centroblasts, whereas they were CD138(+)CD20(low/-) plasmablasts in T:B aggregates. The presence of GCs or T:B aggregates was strongly associated with tubular basement membrane immune complexes. These data implicate tertiary lymphoid neogenesis in the pathogenesis of lupus tubulointerstitial inflammation.  相似文献   

15.
Chronic lymphocytic leukemia (CLL) is an indolent malignancy of CD5+ B lymphocytes. CLL cells express CD40, a key regulator of B cell proliferation, differentiation, and survival. In nonmalignant B cells, CD40 ligation results in nuclear translocation and activation of NF-kappaB proteins. Based on observations that in some CLL cases, the tumor cells express both CD40 and its ligand, CD154 (CD40 ligand), we proposed a model for CLL pathogenesis due to CD40 ligation within the tumor. To evaluate this issue, we used freshly isolated CLL B cells to examine constitutive and inducible NF-kappaB activity by electrophoretic mobility shift assay. We consistently observed high levels of nuclear NF-kappaB-binding activity in unstimulated CLL B cells relative to that detected in nonmalignant human B cells. In each case examined, CD40 ligation further augmented NF-kappaB activity and prolonged CLL cell survival in vitro. The principle NF-kappaB proteins in stimulated CLL cells appear to be quite similar to those in nonmalignant human B cells and include p50, p65, and c-Rel. In a CD154-positive case, blocking CD154 engagement by mAb to CD154 resulted in inhibition of NF-kappaB activity in the CLL cells. The addition of anti-CD154 mAb resulted in accelerated CLL cell death to a similar degree as was observed in cells exposed to dexamethasone. These data indicate that CD40 engagement has a profound influence on NF-kappaB activity and survival in CLL B cells, and are consistent with a role for CD154-expressing T and B cells in CLL pathogenesis. The data support the development of novel therapies based on blocking the CD154-CD40 interaction in CLL.  相似文献   

16.
Chronic lymphocytic leukemia (CLL) development and progression are thought to be driven by unknown antigens/autoantigens through the B cell receptor (BCR) and environmental signals for survival and expansion including toll-like receptor (TLR) ligands. CD180/RP105, a membrane-associated orphan receptor of the TLR family, induces normal B cell activation and proliferation and is expressed by approximately 60% of CLL samples. Half of these respond to ligation with anti-CD180 antibody by increased activation/phosphorylation of protein kinases associated with BCR signaling. Hence CLL cells expressing both CD180 and the BCR could receive signals via both receptors. Here we investigated cross-talk between BCR and CD180-mediated signaling on CLL cell survival and apoptosis. Our data indicate that ligation of CD180 on responsive CLL cells leads to activation of either prosurvival Bruton tyrosine kinase (BTK)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT-mediated, or proapoptotic p38 mitogen-activated protein kinase (p38MAPK)-mediated signaling pathways, while selective immunoglobulin M (sIgM) ligation predominantly engages the BTK/PI3K/AKT pathway. Furthermore, pretreatment of CLL cells with anti-CD180 redirects IgM-mediated signaling from the prosurvival BTK/PI3K/AKT toward the proapoptotic p38MAPK pathway. Thus preengaging CD180 could prevent further prosurvival signaling mediated via the BCR and, instead, induce CLL cell apoptosis, opening the door to therapeutic profiling and new strategies for the treatment of a substantial cohort of CLL patients.  相似文献   

17.
18.
Chronic lymphocytic leukemia (CLL) is characterized by clonal accumulation of CD5+ CD19+ B lymphocytes that are arrested in the G0/G1 phase of the cell cycle and fail to undergo apoptosis because of overexpression of the antiapoptotic B-cell CLL/lymphoma 2 (BCL-2) protein. Oncolytic viruses, such as vesicular stomatitis virus (VSV), have emerged as potential anticancer agents that selectively target and kill malignant cells via the intrinsic mitochondrial pathway. Although primary CLL cells are largely resistant to VSV oncolysis, we postulated that targeting the apoptotic pathway via inhibition of BCL-2 may sensitize CLL cells to VSV oncolysis. In the present study, we examined the capacity of EM20-25—a small-molecule antagonist of the BCL-2 protein—to overcome CLL resistance to VSV oncolysis. We demonstrate a synergistic effect of the two agents in primary ex vivo CLL cells (combination index of 0.5; P < 0.0001). In a direct comparison of peripheral blood mononuclear cells from healthy volunteers with primary CLL, the two agents combined showed a therapeutic index of 19-fold; furthermore, the combination of VSV and EM20-25 increased apoptotic cell death in Karpas-422 and Granta-519 B-lymphoma cell lines (P < 0.005) via the intrinsic mitochondrial pathway. Mechanistically, EM20-25 blocked the ability of the BCL-2 protein to dimerize with proapoptotic BAX protein, thus sensitizing CLL to VSV oncolytic stress. Together, these data indicate that the use of BCL-2 inhibitors may improve VSV oncolysis in treatment-resistant hematological malignancies, such as CLL, with characterized defects in the apoptotic response.  相似文献   

19.
CD4+ CD25+ regulatory Tt cells are expanded in solid and hematological malignancies including chronic lymphocytic leukemia (CLL). Several cytokines and co-stimulatory molecules are required for generation, survival and maintenance of their suppressive effect. We and others have shown direct cytotoxic effect of the novel common gamma chain cytokine interleukin (IL)-21 on primary B cells from CLL patients. Since members of this family of cytokines are known to exhibit their effects on diverse immune cells, we have examined the effects of IL-21 on CLL patient derived regulatory cell (Treg) induction, expansion and the inhibitory effect on natural killer cells in vitro. We demonstrate here the expression of IL-21 receptor in CD4+CD25High regulatory cells from CLL patients. In contrast to IL-2, the IL-21 cytokine failed to mediate expansion of regulatory cells or induced expression of Foxp3 in CD4+CD25Intermediate or CD4+CD25Dim/− cells in whole blood derived from CLL pat ients. Interestingly, in contrast to their differential effects on expansion of the CD4+CD25+Foxp3+T cells, IL-2 and IL-21 exhibited a redundant role in Ttreg mediated suppression of NK cell mediated antibody dependent cytotoxicity function. Given the infusion related toxicities and pro-survival effect of IL-2 in CLL, these studies provide a rationale to explore IL-21 as an alternate gamma chain cytokine in CLL therapy.Key words: chronic lymphocytic leukemia, IL-21, IL-2, immunosuppression, antibody dependent cellular cytotoxicity  相似文献   

20.
BackgroundBlocking CD20 can inhibit autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA).ObjectiveWe examined whether an antibody against CD20, rituximab (RTX) (Rituxan®), used clinically in oncology, MS and RA would have similar anti-inflammatory effects in EAE after oral administration.Design/methodsB6 mice were immunized with MOG peptide 35–55 and gavaged with control saline or RTX during ongoing disease. Splenocytes or CD4+ T cells from control fed or RTX fed mice were adoptively transferred into active MOG peptide 35–55 immunized recipient mice during ongoing disease. Actively fed and recipient mice were examined for disease inhibition, inflammation, and cytokine responses.ResultsIngested (oral) RTX inhibited ongoing disease and decreased inflammation. Adoptively transferred cells from RTX fed donors protected against actively induced disease and decreased inflammation. There was a decrease in Th1-like cytokines IFN-γ and IL-12, IL-17 and TNF-α in active fed and adoptively treated recipients without upregulation of counter-regulatory cytokines.ConclusionsIngested (orally administered) RTX can inhibit disease, CNS inflammation, decrease pro-inflammatory IL-17 and Th1-like cytokines without increases in Th2-like anti-inflammatory cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号