共查询到20条相似文献,搜索用时 15 毫秒
1.
Propagation of electrical activity between myocytes in the heart requires gap junction channels, which contribute to coordinated
conduction of the heartbeat. Some antipsychotic drugs, such as thioridazine and its active metabolite, mesoridazine, have
known cardiac conduction side-effects, which have resulted in fatal or nearly fatal clinical consequences in patients. The
physiological mechanisms responsible for these cardiac side-effects are unknown. We tested the effect of thioridazine and
mesoridazine on gap junction-mediated intercellular communication between cells that express the major cardiac gap junction
subtype connexin 43. Micromolar concentrations of thioridazine and mesoridazine inhibited gap junction-mediated intercellular
communication between WB-F344 epithelial cells in a dose-dependent manner, as measured by fluorescent dye transfer. Kinetic
analyses demonstrated that inhibition by 10 μmol/L thioridazine occurred within 5 min, achieved its maximal effect within
1 h, and was maintained for at least 24 h. Inhibition was reversible within 1 h upon removal of the drug. Western blot analysis
of connexin 43 in a membrane-enriched fraction of WB-F344 cells treated with thioridazine revealed decreased amounts of unphosphorylated
connexin 43, and appearance of a phosphorylated connexin 43 band that co-migrated with a “hyperphosphorylated” connexin 43
band present in TPA-inhibited cells. When tested for its effects on cardiomyocytes isolated from neonatal rats, thioridazine
decreased fluorescent dye transfer between colonies of beating myocytes. Microinjection of individual cells with fluorescent
dye also showed inhibition of dye transfer in thioridazine-treated cells compared to vehicle-treated cells. In addition, thioridazine,
like TPA, inhibited rhythmic beating of myocytes within 15 min of application. In light of the fact that the thioridazine
and mesoridazine concentrations used in these experiments are in the range of those used clinically in patients, our results
suggest that inhibition of gap junction intercellular communication may be one factor contributing to the cardiac side-effects
observed in some patients taking these medications. 相似文献
2.
There is general agreement that the connexin43 gap junction protein is a substrate for phosphorylation by protein kinase C but there is no similar consensus regarding the action of protein kinase A. Our previous studies demonstrated that channels formed by connexin43 were reversibly gated in response to microinjected protein kinase A and protein kinase C, but we did not determine whether these effects involved direct action on the connexin43 protein. Using a combination of in vivo metabolic labeling and in vitro phosphorylation of recombinant protein and synthetic peptides, we now find that connexin43 is a relatively poor substrate for purified protein kinase A compared to protein kinase C, but that phosphorylation can be accelerated by 8-Br-cAMP (8-bromoadenosine 3,5-cyclic monophosphate) which also enhances connexin43 synthesis but at a much slower rate than phosphorylation. Phosphorylation of a critical amino acid, Ser364, by protein kinase A, appears to be necessary for subsequent multiple phosphorylations by protein kinase C. However, protein kinase C can phosphorylate connexin43 at a reduced level in the absence of prior phosphorylation. The results suggest that the correct regulation of channels formed by connexin43 may require sequential phosphorylations of this protein by protein kinase A and protein kinase C. 相似文献
3.
The mechanism by which v-Src disrupts connexin (Cx)43 intercellular gap junctional communication (GJC) is not clear. In this study, we determined that Tyr247 (Y247) and the previously identified Tyr265 (Y265) site of Cx43 were the primary phosphorylation targets for activated Src in vitro. We established an in vivo experimental system by stably expressing v-Src and wild-type (wt) Cx43, or Y247F, Y265F, or Y247F/Y265F Cx43 mutants in a Cx43 knockout mouse cell line. Wt and mutant Cx43 localized to the plasma membrane in the absence or presence of v-Src. When coexpressed with v-Src, the Y247F, Y265F, and Y247F/Y265F Cx43 mutants exhibited significantly reduced levels of tyrosine phosphorylation compared with wt Cx43, indicating that Y247 and Y265 were phosphorylation targets of v-Src in vivo. Most importantly, GJC established by the Y247F, Y265F, and Y247F/Y265F Cx43 mutants was resistant to disruption by v-Src. Furthermore, we did not find evidence for a role for mitogen-activated protein kinase in mediating the disruption of GJC by v-Src. We conclude that phosphorylation on Y247 and Y265 of Cx43 is responsible for disrupting GJC in these mammalian cells expressing v-Src. 相似文献
4.
Scott R. Johnstone Angela K. Best Catherine S. Wright Brant E. Isakson Rachel J. Errington Patricia E. Martin 《Journal of cellular biochemistry》2010,110(3):772-782
Connexins (Cxs) and gap junction (GJ)‐mediated communication have been linked with the regulation of cell cycle traverse. However, it is not clear whether Cx expression or GJ channel function are the key mediators in this process or at what stage this regulation may occur. We therefore tested the hypothesis that enhanced Cx expression could alter the rate of cell cycle traverse independently of GJ channel function. Sodium butyrate (NaBu) or anti‐arrhythmic peptide (AAP10) were used to enhance Cx expression in HeLa cells stably expressing Cx43 (HeLa‐43) and primary cultures of human fibroblasts (HFF) that predominantly express Cx43. To reduce GJ‐mediated communication, 18‐α‐glycyrrhetinic acid (GA) was used. In HeLa‐43 and HFF cells, NaBu and AAP10 enhanced Cx43 expression and increased channel function, while GA reduced GJ‐mediated communication but did not significantly alter Cx43 expression levels. Timelapse microscopy and flow cytometry of HeLa‐WT (wild‐type, Cx deficient) and HeLa‐43 cells dissected cell cycle traverse and enabled measurements of intra‐mitotic time and determined levels of G1 arrest. Enhanced Cx43 expression increased mitotic durations corresponding with a G1 delay in cell cycle, which was linked to an increase in expression of the cell cycle inhibitor p21waf1/cip1 in both HeLa‐43 and HFF cells. Reductions in Cx43 channel function did not abrogate these responses, indicating that GJ channel function was not a critical factor in reducing cell proliferation in either cell type. We conclude that enhanced Cx43 expression and not GJ‐mediated communication, is involved in regulating cell cycle traverse. J. Cell. Biochem. 110: 772–782, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
5.
The oncogenic tyrosine kinase, v-Src, phosphorylates connexin43 (Cx43) on Y247 and Y265 and inhibits Cx43 gap junctional communication (GJC), the process of intercellular exchange of ions and metabolites. To test the role of a negative charge on Cx43 induced by tyrosine phosphorylation, we expressed Cx43 with glutamic acid substitutions at Y247 or Y265. The Cx43Y247E or Cx43Y265E channels were functional in Cx43 knockout fibroblasts, indicating that introducing a negative charge on Cx43 was not likely the mechanism for v-Src disruption of GJC. Cells coexpressing v-Src and the triple serine to alanine mutant, Cx43S255/279/282A, confirmed that mitogen-activated protein (MAP) kinase phosphorylation of Cx43 was not required for v-Src-induced disruption of GJC and that tyrosine phosphorylation was sufficient. In addition, v-Src cells containing v-Src-resistant gap junctions, Cx43Y247/265F, displayed properties of cell migration, adhesion, and proliferation similar to Cx43wt/v-Src cells, suggesting that Cx43 tyrosine phosphorylation and disruption of GJC are not involved in these transformed cell properties. 相似文献
6.
Receptor activator of NF-kappaB ligand (RANKL) is crucial in osteoclastogenesis but signaling events involved in osteoclast differentiation are far from complete and other signals may play a role in osteoclastogenesis. A more direct pathway for cellular crosstalk is provided by gap junction intercellular channel, which allows adjacent cells to exchange second messengers, ions, and cellular metabolites. Here we have investigated the role of gap junction communication in osteoclastogenesis in mouse bone marrow cultures. Immunoreactive sites for the gap junction protein connexin 43 (Cx43) were detected in the marrow stromal cells and in mature osteoclasts. Carbenoxolone (CBX) functionally blocked gap junction communication as demonstrated by a scrape loading Lucifer Yellow dye transfer technique. CBX caused a dose-dependent inhibition (significant > or = 90 microM) of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells formed in 7- to 8-day marrow cultures stimulated by parathyroid hormone (PTH; 10 nM) or forskolin (FSK; 1 microM). Furthermore, CBX (100 microM) significantly inhibited prostaglandin E2 (PGE2; 10 microM) and 1,25(OH)2-vitamin D3 stimulated osteoclast differentiation in the mouse bone marrow cultures. Consequently, quantitative real-time polymerase chain reaction (PCR) analysis demonstrated that CBX downregulated the expression of osteoclast phenotypic markers, but without having any significant effects on RANK, RANKL, and osteoprotegerin (OPG) mRNA expression. However, the results demonstrated that CBX significantly inhibits RANKL-stimulated (100 ng/ml) osteoclastogenesis in the mouse bone marrow cultures. Taken together, our results suggests that gap junctional diffusion of messenger molecules interacts with signaling pathways downstream RANKL in osteoclast differentiation. Further studies are required to define the precise mechanisms and molecular targets involved. 相似文献
7.
Banerjee D Das S Molina SA Madgwick D Katz MR Jena S Bossmann LK Pal D Takemoto DJ 《The Journal of biological chemistry》2011,286(27):24519-24533
Connexins are the transmembrane proteins that form gap junctions between adjacent cells. The function of the diverse connexin molecules is related to their tissue-specific expression and highly dynamic turnover. Although multiple connexins have been previously reported to compensate for each other's functions, little is known about how connexins influence their own expression or intracellular regulation. Of the three vertebrate lens connexins, two connexins, connexin43 (Cx43) and connexin46 (Cx46), show reciprocal expression and subsequent function in the lens and in lens cell culture. In this study, we investigate the reciprocal relationship between the expression of Cx43 and Cx46. Forced depletion of Cx43, by tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate, is associated with an up-regulation of Cx46 at both the protein and message level in human lens epithelial cells. An siRNA-mediated down-regulation of Cx43 results in an increase in the level of Cx46 protein, suggesting endogenous Cx43 is involved in the regulation of endogenous Cx46 turnover. Overexpression of Cx46, in turn, induces the depletion of Cx43 in rabbit lens epithelial cells. Cx46-induced Cx43 degradation is likely mediated by the ubiquitin-proteasome pathway, as (i) treatment with proteasome inhibitors restores the Cx43 protein level and (ii) there is an increase in Cx43 ubiquitin conjugation in Cx46-overexpressing cells. We also present data that shows that the C-terminal intracellular tail domain of Cx46 is essential to induce degradation of Cx43. Therefore, our study shows that Cx43 and Cx46 have novel functions in regulating each other's expression and turnover in a reciprocal manner in addition to their conventional roles as gap junction proteins in lens cells. 相似文献
8.
Tao Huang Yigang Wan Ying Zhu Xin Fang Nobuhiko Hiramatsu Konihiro Hayakawa Adrienne W. Paton James C. Paton Masanori Kitamura Jian Yao 《Journal of cellular biochemistry》2009,107(5):973-983
Gap junctional intercellular communication (GJIC) plays a critical role in the control of multiple cell behavior as well as in the maintenance of tissue and organ homeostasis. However, mechanisms involved in the regulation of gap junctions (GJs) have not been fully understood. Given endoplasmic reticulum (ER) stress and dysfunction of GJs coexist in several pathological situations, we asked whether GJs could be regulated by ER stress. Incubation of mesangial cells with ER stress‐inducing agents (thapsigargin, tunicamycin, and AB5 subtilase cytotoxin) resulted in a decrease in connexin 43 (Cx43) expression at both protein and mRNA levels. This was accompanied by a loss of GJIC, as evidenced by the reduced numbers of dye‐coupled cells after single cell microinjection or scrape loading dye transfer. Further studies demonstrated that ER stress significantly inhibited the promoter activity of the Cx43 gene, reduced [35S]‐methionine incorporation into Cx43 protein and accelerated degradation of Cx43. ER stress also decreased the Cx43 protein levels in several different cell types, including human umbilical vein endothelial cells, mouse‐derived renin‐secreting cells and human hepatoma cells. Furthermore, induction of ER stress by hypoxic chemicals thenoyltrifluoroacetone and cobalt chloride was found to be associated with a reduction in Cx43. Our findings thus reveal a close link between ER stress and GJs. ER stress may represent a novel mechanism underlying the altered GJs in a variety of pathological situations. J. Cell. Biochem. 107: 973–983, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
9.
Expression of the gap junction protein connexin43 in embryonic chick lens: Molecular cloning,ultrastructural localization,and post-translational phosphorylation 总被引:13,自引:0,他引:13
Linda S. Musil Eric C. Beyer Daniel A. Goodenough 《The Journal of membrane biology》1990,116(2):163-175
Summary Lens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein. 相似文献
10.
Gap junctions serve as intercellular conduits that allow the exchange of small molecular weight molecules (up to 1 kDa) including ions, metabolic precursors and second messengers. Microglia are capable of recognizing peptidoglycan (PGN) derived from the outer cell wall of Staphylococcus aureus, a prevalent CNS pathogen, and respond with the robust elaboration of numerous pro-inflammatory mediators. Based on recent reports demonstrating the ability of tumor necrosis factor-alpha and interferon-gamma to induce gap junction coupling in macrophages and microglia, it is possible that pro-inflammatory mediators released from PGN-activated microglia are capable of inducing microglial gap junction communication. In this study, we examined the effects of S. aureus-derived PGN on Cx43, the major connexin in microglial gap junction channels, and functional gap junction communication using single-cell microinjections of Lucifer yellow (LY). Exposure of primary mouse microglia to PGN led to a significant increase in Cx43 mRNA and protein expression. LY microinjection studies revealed that PGN-treated microglia were functionally coupled via gap junctions, the specificity of which was confirmed by the reversal of activation-induced dye coupling by the gap junction blocker 18-alpha-glycyrrhetinic acid. In contrast to PGN-activated microglia, unstimulated cells consistently failed to exhibit LY dye coupling. These results indicate that PGN stimulation can induce the formation of a functional microglial syncytium, suggesting that these cells may be capable of influencing neuro-inflammatory responses in the context of CNS bacterial infections through gap junction intercellular communication. 相似文献
11.
Gap junctions form channels that allow exchange of materials between cells and are composed of transmembrane protein subunits called connexins. While connexins are believed to mediate cellular signaling by permitting intercellular communication to occur, there is also increasing evidence that suggest connexins may mediate growth control via a junction-independent mechanism. Connexin43 (Cx43) is the most abundant gap junction protein found in astrocytes, and gliomas exhibit reduced Cx43 expression. We have previously observed that restoration of Cx43 levels in glioma cells led to increased expression of CCN3 (NOV) proteins. We now report that overexpression of Cx43 in C6-glioma cells (C6-Cx43) also upregulates the expression of CCN1 (Cyr61). Both CCN1 and CCN3 belong to the Cyr61/Connective tissue growth factor/Nephroblastoma-overexpressed (CCN) family of secretory proteins. The CCN proteins are tightly associated with the extracellular matrix and have important roles in cell proliferation and migration. CCN1 promotes growth in glioma cells, as shown by the increased proliferation rate of CCN1-overexpressing C6 cells. In addition to its effect on cell growth, CCN1 also increased the motility of glioma cells in the presence of extracellular substrates such as fibronectin. Gliomas expressing high levels of Cx43 preferentially upregulated CCN3 which resulted in reduced growth rate. CCN3 could also be observed in Cx43 gap junction plaques in confluent C6-Cx43H culture at the stationary phase of their growth. Our results suggest that the dissimilar growth characteristics between high and low Cx43 expressors may be due to differential regulation of CCN3 by varying levels of Cx43. 相似文献
12.
13.
Phosphorylation of connexin43 induced by Src: regulation of gap junctional communication between transformed cells 总被引:6,自引:0,他引:6
Cx43 is a widely expressed gap junction protein that mediates communication between many cell types. In general, tumor cells display less intercellular communication than their nontransformed precursors. The Src tyrosine kinase has been implicated in progression of a wide variety of cancers. Src can phosphorylate Cx43, and this event is associated with the suppression of gap junction communication. However, Src activates multiple signaling pathways that can also affect intercellular communication. For example, serine kinases including PKC and MAPK are downstream effectors of Src that can also phosphorylate Cx43 and disrupt gap junctional communication. In addition, Src can affect the expression of other proteins that may affect intercellular communication. Indeed, disruption of gap junctions by Src appears to be complex. It has become clear that Src can affect Cx43 activity by multiple mechanisms. Here, we review how Src may orchestrate events that regulate intercellular communication mediated by Cx43. 相似文献
14.
The N-terminal (NT) domain of the connexins forms an essential transjunctional voltage (Vj) sensor and pore-forming domain that when truncated, tagged, or mutated often leads to formation of a nonfunctional channel. The NT domain is relatively conserved among the connexins though the α- and δ-group connexins possess a G2 residue not found in the β- and γ-group connexins. Deletion of the connexin40 G2 residue (Cx40G2Δ) affected the Vj gating, increased the single channel conductance (γj), and decreased the relative K+/Cl? permeability (PK/PCl) ratio of the Cx40 gap junction channel. The conserved α/β-group connexin D2/3 and W3/4 loci are postulated to anchor the NT domain within the pore via hydrophilic and hydrophobic interactions with adjacent connexin T5 and M34 residues. Cx40D3N and D3R mutations produced limited function with progressive reductions in Vj gating and noisy low γj gap junction channels that reduced the γj of wild-type Cx40 channels from 150 pS to < 50 pS when coexpressed. Surprisingly, hydrophobic Cx40 W4F and W4Y substitution mutations were not compatible with function despite their ability to form gap junction plaques. These data are consistent with minor and major contributions of the G2 and D3 residues to the Cx40 channel pore structure, but not with the postulated hydrophobic W4 intermolecular interactions. Our results indicate an absolute requirement for an amphipathic W3/4 residue that is conserved among all α/β/δ/γ-group connexins. We alternatively hypothesize that the connexin D2/3-W3/4 locus interacts with the highly conserved FIFR M1 motif to stabilize the NT domain within the pore. 相似文献
15.
《FEBS letters》2014,588(8):1423-1429
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially “unzip” and be internalized/endocytosed into the cell that produced each connexin. 相似文献
16.
Yongchang Lai Xiongfa Liang Fangling Zhong Weizhou Wu Tao Zeng Jian Huang Xiaolu Duan Shujue Li Guohua Zeng Wenqi Wu 《Journal of cellular physiology》2019,234(6):9640-9651
Renal calculus is a global common urological disease that is closely related to crystal adhesion and renal tubular epithelial cell impairment. Gap junctions (GJs) and their components (connexins and Cxs) are involved in various pathophysiology processes, but their roles in renal calculi progression are not well defined. Our previous RNA microarray analysis suggests that GJs are one of the key predicted pathways involved in the renal calcium oxalate (CaOx) crystal rat model. In the current study, we found that the Cx43 and Cx32 expression and the GJ function decreased significantly after stimulation with CaOx or sodium oxalate (NaOx) in NRK-52E, MDCK, and HK-2 cells, and Cx43 expression also decreased in renal tissues in renal CaOx crystal model rats. Inhibition of Cx43 in NRK-52E cells by small interference RNA significantly increased the CD44 and androgen receptor expression, and the adhesion between CaOx crystals and cells, which were consistent with the function of GJ inhibitors. On the other hand, after GJ function and Cx43 expression were increased by allicin, diallyl disulfide, or diallyl trisulfide, the impairment of NRK-52E cells by NaOx or other GJ inhibitors and the adhesion between CaOx crystals and renal cells decreased significantly. Furthermore, allicin also increased Cx43 expression and inhibited crystal deposition in rat kidneys. Taken together, our results provide a basis that GJs and Cx43 may participate in renal CaOx stone progression and that allicin, together with its analogues, could be potential drugs for renal calculus precaution. 相似文献
17.
The mechanism by which 18beta-glycyrrhetinic acid regulates gap junction intercellular communication (GJIC) remains poorly understood. In this study, treatment of cultured rat neonatal cardiomyocytes with 18beta-glycyrrhetinic acid resulted in dose-dependent inhibition of GJIC as assessed by fluorescent dye transfer analysis. 18beta-Glycyrrhetinic acid induced time-dependent serine/threonine dephosphorylation and redistribution of connexin43 (Cx43) in cardiomyocytes and the induced Cx43 dephosphorylation was prevented by the protein phosphatase inhibitor, calyculin A. However, functional analyses showed that the inhibitory effect of 18beta-glycyrrhetinic acid on dye spreading among cardiomyocytes was not blocked by calyculin A, but was blocked by the Src-selective tyrosine kinase inhibitor, PP2. 18beta-Glycyrrhetinic acid also induced an increase in the levels of phosphorylated Src, and this effect was prevented by PP2. Immunoprecipitation using anti-Cx43 and anti-p-Src antibodies showed that 18beta-glycyrrhetinic acid increased the association between p-Src and Cx43 and induced tyrosine phosphorylation of Cx43. We conclude that the inhibitory effect of 18beta-glycyrrhetinic acid on GJIC in cardiomyocytes involves Src-mediated tyrosine phosphorylation of Cx43. 相似文献
18.
《Channels (Austin, Tex.)》2013,7(5):433-443
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication. 相似文献
19.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication. 相似文献
20.
Cells within the vascular wall are coupled by gap junctions, allowing for direct intercellular transfer of low molecular weight molecules. Although gap junctions are believed to be important for vascular development and function, their precise roles are not well understood. Mice lacking either connexin37 (Cx37) or connexin40 (Cx40), the predominant gap junction proteins present in vascular endothelium, are viable and exhibit phenotypes that are largely non-blood vessel related. Since Cx37 and Cx40 are coexpressed in endothelial cells and could overlap functionally, some roles of junctional communication may only be revealed by the elimination of both connexins. In this study, we interbreed Cx37 and Cx40 knockout mice to generate Cx37-/- Cx40-/- animals and show that they display severe vascular abnormalities and die perinatally. Cx37-/- Cx40-/- animals exhibit localized hemorrhages in skin, testis, gastrointestinal tissues, and lungs, with pronounced blood vessel dilatation and congestion occurring in some areas. Vascular anomalies were particularly striking in testis and intestine. In testis, abnormal vascular channels were present, with these channels coalescing into a cavernous, endothelium-lined blood pool resembling a hemangioma. These results provide evidence of a critical role for endothelial gap junction-mediated communication in the development and/or functional maintenance of segments of the mouse vasculature. 相似文献