首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Restriction fragment length polymorphisms (RFLPs) of genomic DNA are generally attributable to base changes that create or abolish restriction endonuclease sites or to nucleotide sequence insertions or deletions that alter the distance separating two restriction sites. Minisatellite or variable number of tandem repeats (VNTR) markers are prominent examples of the latter type of polymorphism. In this report, we describe complex DNA polymorphisms that are due both to the presence of VNTRs as well as to altered restriction endonuclease sites. A strategy for identifying such polymorphisms and resolving their component allelic fragments is demonstrated.  相似文献   

2.
The systematics of the species-rich genus of Sebastes rockfish has not been resolved, and is unlikely to be resolved using morphological criteria. Using an alternative approach based on DNA sequence variation, we sampled the genome for random, presumably neutral, nuclear DNA sequences, by sequencing microsatellite flanking regions of 15 Sebastes species (representing 15 of 22 extant subgenera) and Hozukius emblemarius. We aligned sequences of flanking regions of eight of the 13 loci that amplified, which presumably are homologous. In aggregate, the aligned sequences included 848 bp, 53 bp of which were polymorphic. The base changes among species included 27 transitions, 20 transversions, three multiple substitutions, and three deletions or insertions. The flanking regions at different loci had different base substitution rates. Nucleotide divergence among Sebastes species ranged from 0.0012 to 0.0216, whereas nucleotide divergence between Sebastes and Hozukius species ranged from 0.0095 to 0.0240. We used maximum parsimony, neighbor-joining, and maximum likelihood methods to examine relationships among the species. H. emblemariusformed a separate group, and five of the western Pacific Ocean species of rockfish clustered together, suggesting that they may have shared an evolutionary history distinct from many North American species. The flanking regions of some microsatellite loci contain DNA sequence variation that distinguishes rockfish species and may prove useful for clarifying relationships among rockfish, or other closely related species.  相似文献   

3.
DNA polymorphism of randomly selected genes in rice cultivars was analyzed by the polymerase chain reaction-restriction fragment-single strand conformation polymorphism (PCR-RF-SSCP) technique. Single DNA fragments were amplified from genomic DNA of the Nipponbare cultivar by 671 primer pairs among the 1000 primer pairs tested. PCR-RF-SSCP analysis using the 671 primer pairs detected polymorphism in 108 DNA fragments between 17 japonica paddy-rice cultivars. An average of 36.9 DNA fragments showed polymorphism between any pair of japonica paddy-rice cultivars. The nucleotide sequences of the polymorphic DNA fragments were determined for 50 alleles of 45 genes together with Nipponbare alleles. In these genes, 142 SNPs and 32 insertions/deletions were identified. Among these 174 sequence variations, 71 were in exons, 78 in introns, and 25 in unassigned regions. There were 28 alleles which had sequence variations in the exons. One allele had a 1-bp deletion in the exon causing a frame-shift mutation, 15 alleles had missense mutations, and the other 12 alleles had synonymous changes and/or sequence variations in 3' untranslated regions. The number of genes having sequence variations between the rice cultivars and the functional implications of the identified SNPs are herein discussed.  相似文献   

4.
5.
Although oligonucleotide probes complementary to single nucleotide substitutions are commonly used in microarray-based screens for genetic variation, little is known about the hybridization properties of probes complementary to small insertions and deletions. It is necessary to define the hybridization properties of these latter probes in order to improve the specificity and sensitivity of oligonucleotide microarray-based mutational analysis of disease-related genes. Here, we compare and contrast the hybridization properties of oligonucleotide microarrays consisting of 25mer probes complementary to all possible single nucleotide substitutions and insertions, and one and two base deletions in the 9168 bp coding region of the ATM (ataxia telangiectasia mutated) gene. Over 68 different dye-labeled single-stranded nucleic acid targets representing all ATM coding exons were applied to these microarrays. We assess hybridization specificity by comparing the relative hybridization signals from probes perfectly matched to ATM sequences to those containing mismatches. Probes complementary to two base substitutions displayed the highest average specificity followed by those complementary to single base substitutions, single base deletions and single base insertions. In all the cases, hybridization specificity was strongly influenced by sequence context and possible intra- and intermolecular probe and/or target structure. Furthermore, single nucleotide substitution probes displayed the most consistent hybridization specificity data followed by single base deletions, two base deletions and single nucleotide insertions. Overall, these studies provide valuable empirical data that can be used to more accurately model the hybridization properties of insertion and deletion probes and improve the design and interpretation of oligonucleotide microarray-based resequencing and mutational analysis.  相似文献   

6.
SSR allelic variation in almond (Prunus dulcis Mill.)   总被引:9,自引:0,他引:9  
Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

7.
Single nucleotide polymorphisms or SNPs are the most abundant form of genetic variation in the genome of plants and animals. Microsatellites are hypervariable regions of genome, while their flanking regions are assumed to be as conserved as the average of the genome. In the present study, flanking sequences of 10 microsatellite loci were compared in different cultivars of Vitis to determine the existing polymorphism. For every microsatellite, about 8 homozygous cultivars (regarding the microsatellite genotype) were chosen for sequencing. A total of 45 different varieties of Vitis and 91 sequences were analysed. Sequence polymorphisms were detected for all the microsatellite flanking regions studied, including single nucleotide polymorphisms (SNPs), insertions and deletions. The number of identified changes varied considerably among the loci with a frequency of one polymorphism every 41 nucleotides, being VVMD5 the most polymorphic one. A number of SNPs were used to design SNP markers, which were scored by dideoxy single base primer extension and capillary electrophoresis methodology. These SNP markers were employed to genotype 21 cultivars of Vitis vinifera and 4 varieties of other Vitis species. The utility of the markers developed as well as their utility for varietal identification and pedigree studies is discussed, using a similar study carried out with the 10 microsatellites as a reference.  相似文献   

8.
9.
In Neurospora crassa, the expression of unlinked structural genes which encode nitrogen catabolic enzymes is subject to genetic and metabolic regulation. The negative-acting nmr regulatory gene appears to play a role in nitrogen catabolite repression. Using the N. crassa nmr gene as a probe, homologous sequences were identified in a variety of other filamentous fungi. The polymerase chain reaction was used to isolate the nmr-like gene from the exotic Mauriceville strain of N. crassa and from the two related species, N. intermedia and N. sitophila. Sequence comparisons were carried out with a 1.7-kb DNA segment which includes the entire coding region of nmr plus 5' and 3' noncoding sequences. The size of the nmr coding region was identical in all three Neurospora species. Approximately 30 nucleotide base substitutions were found in the coding region of the nmr gene of each of the sister species when compared to the standard N. crassa sequence. However, most of the base changes occurred in third codon positions and were silent. The NMR proteins of N. sitophila and of N. intermedia display only three and four amino acid substitutions, respectively, from the N. crassa protein. Two regions of high variability, which include deletions and insertions of bases, were found in the 5' and 3' noncoding regions of the gene.  相似文献   

10.
Bacteria of the genus Rhizobium and related genera establish nitrogen-fixing symbioses with the roots of leguminous plants. The genetic elements that participate in the symbiotic process are usually compartmentalized in the genome, either as independent replicons (symbiotic plasmids) or as symbiotic regions or islands in the chromosome. The complete nucleotide sequence of the symbiotic plasmid of Rhizobium etli model strain CFN42, symbiont of the common bean plant, has been reported. To better understand the basis of DNA sequence diversification of this symbiotic compartment, we analyzed the distribution of single-nucleotide polymorphisms in homologous regions from different Rhizobium etli strains. The distribution of polymorphisms is highly asymmetric in each of the different strains, alternating regions containing very few changes with regions harboring an elevated number of substitutions. The regions showing high polymorphism do not correspond with discrete genetic elements and are not the same in the different strains, indicating that they are not hypervariable regions of functional genes. Most interesting, some highly polymorphic regions share exactly the same nucleotide substitutions in more than one strain. Furthermore, in different regions of the symbiotic compartment, different sets of strains share the same substitutions. The data indicate that the majority of nucleotide substitutions are spread in the population by recombination and that the contribution of new mutations to polymorphism is relatively low. We propose that the horizontal transfer of homologous DNA segments among closely related organisms is a major source of genomic diversification.  相似文献   

11.
We report the entire glycoprotein (G) gene nucleotide sequences of 26 vesicular stomatitis virus Indiana serotype (VSV IND) type 1 isolates from North and Central America. These sequences are also compared with partial G gene sequences of VSV IND type 2 (Cocal) and type 3 (Alagoas) viruses and the complete G gene sequences of the more distantly related VSV New Jersey (NJ) and Chandipura viruses. Phylogenetic analysis of the G gene sequences by maximum parsimony revealed four major lineages or subtypes within the classical VSV IND (type 1) viruses, each with a distinct geographic distribution. A high degree of VSV genetic diversity was found in Central America, with several virus subtypes of both VSV IND and NJ serotypes existing in this mainly enzootic disease region. Nineteen percent sequence variation but no deletions or insertions were evident within the 5' noncoding and the coding regions of the VSV IND type 1 G genes. In addition to numerous base substitutions, the 3' noncoding regions of these viruses also contained numerous base insertions and deletions. This resulted in striking variation in G gene sizes, with gene lengths ranging from 1,652 to 1,868 nucleotides. As the VSV IND type 1 subtypes have diverged from the common ancestor with the NJ subtypes, their G mRNAs have accumulated more 3' noncoding sequence inserts, ranging up to 303 nucleotides in length. These primarily consist of an imprecise reiteration of the sequence UUUUUAA, apparently generated by a unique polymerase stuttering error. Analysis of the deduced amino acid sequence differences among VSV IND type 1 viruses revealed numerous substitutions within defined antigenic epitopes, suggesting that immune selection may play a role in the evolution of these viruses.  相似文献   

12.
Soybean (Glycine max) is a self-pollinating species that has relatively low nucleotide polymorphism rates compared with other crop species. Despite the low rate of nucleotide polymorphisms, a wide range of heritable phenotypic variation exists. There is even evidence for heritable phenotypic variation among individuals within some cultivars. Williams 82, the soybean cultivar used to produce the reference genome sequence, was derived from backcrossing a Phytophthora root rot resistance locus from the donor parent Kingwa into the recurrent parent Williams. To explore the genetic basis of intracultivar variation, we investigated the nucleotide, structural, and gene content variation of different Williams 82 individuals. Williams 82 individuals exhibited variation in the number and size of introgressed Kingwa loci. In these regions of genomic heterogeneity, the reference Williams 82 genome sequence consists of a mosaic of Williams and Kingwa haplotypes. Genomic structural variation between Williams and Kingwa was maintained between the Williams 82 individuals within the regions of heterogeneity. Additionally, the regions of heterogeneity exhibited gene content differences between Williams 82 individuals. These findings show that genetic heterogeneity in Williams 82 primarily originated from the differential segregation of polymorphic chromosomal regions following the backcross and single-seed descent generations of the breeding process. We conclude that soybean haplotypes can possess a high rate of structural and gene content variation, and the impact of intracultivar genetic heterogeneity may be significant. This detailed characterization will be useful for interpreting soybean genomic data sets and highlights important considerations for research communities that are developing or utilizing a reference genome sequence.  相似文献   

13.
突脐孢属Brnl基因核苷酸序列比较及系统发育研究   总被引:2,自引:0,他引:2  
孙广宇  张雅梅  张荣 《菌物学报》2004,23(4):480-486
对所有供试突脐孢菌株的Brnl基因(1,3,8-三羟基萘还原酶基因)扩增均获得PCR产物。序列比较表明:在种内各菌株间没有核苷酸序列长度变化,存在核苷酸序列简单代换;在种间核苷酸序列长度有变化,核苷酸的缺失或插入发生在内含子区;所有菌株编码区核苷酸序列长度相同;在种内水平氨基酸序列没有差别,显示出高度的保守性。利用最大简约法(Maximum Parsimony)和邻近结合法(Neighbor-joining)构建系统发育树,两个系统发育树的拓扑结构相似,不同种在不同的分支上。Brnl基因适合突脐孢属种级水平的分子系统学研究。  相似文献   

14.
We have isolated and sequenced two full-length cDNA clones encoding actin from carrot. The two carrot clones are almost identical at the nucleotide level, and are quite homologous to each other and to other plant actins at the amino acid level. In those regions where amino acid variation exists between the two genes from carrot, the differences have arisen from very simple changes at the nucleotide level. The most common changes are nucleotide insertion(s) coupled to the deletion of a different nucleotide(s) nearby in the DNA sequence, resulting in the restoration of the proper reading frame for the protein; thus, these changes can be viewed as multiple or coupled frameshift mutations. There are almost no base substitutions between the two carrot genes. In contrast to this, when the carrot actin nucleotide sequences are compared to those of a soybean actin gene or a maize actin gene, many base substitutions are observed (ca. 21.8% and 23.5%), more than half of which are third base changes which do not alter the protein sequence. At the amino acid level, both carrot genes show greater similarity to maize actin than they do to soybean actin, thus reinforcing the idea that plant actin genes diverged from a single common ancestral actin gene prior to the divergence of monocots and dicots.  相似文献   

15.
T Kao  E Moon    R Wu 《Nucleic acids research》1984,12(19):7305-7315
We have isolated and sequenced the cytochrome oxidase subunit II gene from rice (Oryza sativa L. var Labelle). The overall structural organization of this gene is very similar to that of the maize gene. This gene contains an intron in a position identical to the intron in the maize gene. However, the intron in the rice gene is longer than that of the maize gene largely due to a 461 bp insertion sequence, which has inverted repeats at its termini and is flanked by direct repeats, characteristic of transposable elements. Apart from this insertion sequence, the remainder of the intron sequence is strikingly homologous to that of maize (98.6% homology), suggesting a possible functional or structural role. The coding regions of the two genes exhibit 99.5% nucleotide sequence homology and their deduced amino acid sequences are identical. Similarly, the 3'-noncoding regions, except for several small insertions and deletions, show complete sequence homology. On the contrary, no sequence homology is detected in the 5'-noncoding regions.  相似文献   

16.
Understanding the prevailing mutational mechanisms responsible for human genome structural variation requires uniformity in the discovery of allelic variants and precision in terms of breakpoint delineation. We develop a resource based on capillary end sequencing of 13.8 million fosmid clones from 17 human genomes and characterize the complete sequence of 1054 large structural variants corresponding to 589 deletions, 384 insertions, and 81 inversions. We analyze the 2081 breakpoint junctions and infer potential mechanism of origin. Three mechanisms account for the bulk of germline structural variation: microhomology-mediated processes involving short (2-20 bp) stretches of sequence (28%), nonallelic homologous recombination (22%), and L1 retrotransposition (19%). The high quality and long-range continuity of the sequence reveals more complex mutational mechanisms, including repeat-mediated inversions and gene conversion, that are most often missed by other methods, such as comparative genomic hybridization, single nucleotide polymorphism microarrays, and next-generation sequencing.  相似文献   

17.
We screened two human genomic libraries and isolated 14 different clones, designated λG1 and EG1-EG13, homologous to human glyceraldehyde-3-phosphate dehydrogenase (GAPD) cDNA. Subcloning and sequencing these recombinant phages led us to classify them as five different pseudogenes (ψG1–ψG5). All these sequences show such features typical of processed pseudogenes as numerous mutations, insertions, and deletions. The identity of numerous mutated sites among these pseudogenes and the presence of two Alu sequences flanking both ends of ψG1 suggest that GAPD pseudogenes originated from a unique reverse transcribed mRNA followed by gene duplication. The rate of nucleotide substitutions per site per year for known GAPD functional genes is low both for the synonymous substitutions (1.87×10−9) and for the nonsynonymous substitutions (0.12¢10−9) and indicates that the GAPD cDNA sequence is well conserved not only at the amino acid level, but also at the nucleotide level. The rate of nucleotide substitutions per site per year for GAPD pseudogenes shows a higher value (5.9×10−9) and suggests that these pseudogenes do not have any functional role. This work was supported by grants from the Consiglio Nazionale delle Ricerche and the Ministero Pubblica Istruzione (Rome, Italy). Special acknowledgment is given to the “Progetto Finalizzato Ingegneria Genetica e Basi Molecolari delle Malattie Ereditarie.”  相似文献   

18.
Recombination between homologous loci is accompanied by formation of heteroduplexes. Repairing mismatches in heteroduplexes often leads to single nucleotide substitutions in a process known as gene conversion. Gene conversion was shown to be GC‐biased in different organisms; that is, a W(A or T)→S(G or C) substitution is more likely in this process than a S→W substitution. Here, we show that the insertion/deletion ratio for short noncoding indels that reach fixation between species is positively correlated with the recombination rate in Drosophila melanogaster, Homo sapiens, and Saccharomyces cerevisiae. This correlation is both due to an increase of the fixation rate of insertions and decrease of the fixation rate of deletions in regions of high recombination. Whole‐genome data on indel polymorphism and divergence in D. melanogaster rule out mutation biases and selection as the cause of this trend, pointing to insertion‐biased gene conversion as the most likely explanation. The bias toward insertions is the strongest for single‐nucleotide indels, and decreases with indel length. In regions of high recombination rate this bias leads to an up to ~5‐fold excess of fixed short insertions over deletions, and substantially affects the evolution of DNA segments.  相似文献   

19.
Study on the evolution of the grande retrotransposon in the zea genus   总被引:5,自引:0,他引:5  
The study of Grande retrotransposon (RTN) variation reported here comprises the intrinsic element variability and the changes that element insertion provokes in the Zea genome, including its abundance among species. Sequence analysis of a defined long-terminal repeat (LTR) region from Grande RTN revealed a high level of sequence divergence since no identical sequences were found among the 65 clones examined that belong to different Zea species or maize inbred lines. Average diversity values within accessions ranged from 0.17 to 0.37 substitutions per nucleotide. Phylogenetic analysis revealed a lack of concordance between the phylogenetic tree obtained from LTR sequences and the conventional taxonomic tree, suggesting that different subfamilies of Grande elements existed before Zea speciation. When sequence-specific amplification polymorphism (SSAP) marker data, which combines genomic and RTN variation, are used, the derived trees reflect the established species phylogeny and allow, as well, differentiating among some maize lines. Finally, the evaluation of Grande abundance, using different element probes in all the Zea species but Z. luxurians, revealed around 5,700 copies per haploid genome in all the diploid species examined, indicating a similar expansion process of Grande in all the Zea genomes. This number of copies represents in all cases around a 3% of the genome, which implies that Grande RTN is an important component of the maize genome. The copy number ratio LTR/gag is around 2 in all the species analyzed, indicating that overwhelming majority of elements have internal region. Thus, mechanisms such as homologous recombination between LTRs of a single RTN, which would remove the internal region and one LTR, leaving behind a single recombinant LTR, seems not to be active in maize for Grande RTN.  相似文献   

20.
Pristionchus pacificus (Diplogastridae, Nematoda) has recently been described as a ‘satelite’ organism for a functinal comparative approach, becuase genetic, molecular and cell-biological tools can be used in way similar to the genetic model organism Caenorhabditis elegans. This tudy describes the analysis of two previously isolated strains of P. pacificus for the occurrence of restriction fragment length polymorphisms (RFLPs). In all, 14 of 17 randomly chosen cDNA clones give polymorphisms after hybridization to EcoRI digested genomic DNA of the populations from California and Washington. This polymorphism is much higher than polymorphism found among different strains in C. elegans. Therefore this study compares most of the nucleotide sequence of the Ppa-let-60/ras gene between the two strains. No base-pair substitutions were found between these two sequences within the coding regions. However, within the untranslated region, four base-pair substitutions in introns and the deletion of three base-pairs in the 5′ sequence and in intron 4 have been observed. Since the two strains interbreed, RFLPs can be used as molecular markers for future chromosomal walking and gene cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号