首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. 1. This laboratory experiment examined the effects of interspecific competition and predation by Ontholestes cingulatus Gravenhorst (Coleoptera: Staphylinidae) on three species of mycophagous Drosophila (Diptera: Drosophilidae): D.tripunctata Loew, D.falleni Wheeler and D.putrida Sturtevant.
2. Single-species and three-species assemblages were exposed to single commercial mushrooms on wet pine shavings in 200 ml culture bottles. A predacious rove beetle (Ontholestes cingulatus) was present in half of the three-species replicates. The stocked adult flies and beetles were removed after 4 days, and the number, biomass and mean mass of emerging progeny was recorded.
3. For all three species the abundance and biomass of the progeny emerging in the 'no predator' communities' was significantly less than for the progeny emerging in single-species replicates, suggesting an interspecific competitive effect. D.tripunctata was the competitive dominant; it emerged in abundance from all seven three-species 'no predator' communities while D.putrida and D.falleni were often excluded.
4. The decrease in production was attributed to strong interspecific competition among larva and not interference among ovipositing adults.
5. Predation on ovipositing adults significantly reduced the number and biomass of D.tripunctata progeny emerging, and indirectly facilitated the number and biomass of emerging D.falleni and D.putrida.Predation on adults reduced larval recruitment, relaxed larval competition, and released the inferior competitors.  相似文献   

2.
Resource availability and population size in cactophilic Drosophila   总被引:2,自引:0,他引:2  
1. Four species of Drosophila, Drosophila nigrospiracula ( Patterson & Wheeler 1942 ) , Drosophila mettleri ( Heed 1977 ) , Drosophila pachea ( Patterson & Wheeler 1942 ) , and Drosophila mojavensis ( Patterson & Crow 1940 ) , are endemic to the Sonoran Desert of North America and breed in different species of necrotic columnar cacti. Differences in resource availability have been suggested to explain the interspecific variability in fly population biology, but resource availability for these species has not been quantitatively assessed thoroughly in either spatial or temporal terms. The resource availability was quantified quarterly at three sites for 3 years and population sizes for each Drosophila species were estimated.
2. Spatial and temporal availability of resources differed significantly among species of host cacti, with organpipe cactus ( Stenocereus thurberi ) being the least abundant and senita ( Lophocereus schottii ) the most abundant spatially.
3. Drosophila species differed significantly in population size. The largest population sizes were found for D. nigrospiracula and D. mojavensis and smallest for D. pachea . Populations of D. mettleri were intermediate to these.
4. Population size was greatest for fly species utilizing host species having the largest and longest lasting necroses.
5. Resource availability does not explain the reduction of fly populations in the summer. Necroses were most abundant when flies were absent.  相似文献   

3.
Abstract Three broad dietary categories—fungus, plant and arthropod—were identified from faecal samples of two species of small terrestrial mammal in forest vegetation in southwestern Victoria. Fungal material formed the major component of the diet of the long-nosed potoroo Potorous tridactylus throughout the year and of the bush rat Rattus fuscipes during autumn and winter. Fungal material was most abundant for both species during autumn and winter and significantly less common in spring and summer. These results confirm previous studies which found P. tridactylus to be highly mycophagous throughout the year and R. fuscipes to be strongly mycophagous seasonally. Particular consideration was given to the composition of fungi in the diet. Fungal spores in faecal material were assigned to spore classes, which represent one or more fungal species that have similar spore morphology. Twenty-four fungal spore classes were recorded, but for both animal species most of the fungi consumed were from seven major spore classes. The proportions of major spore classes in the diet of both animals were generally similar, even though the composition of spore classes differed markedly across seasons. Minor differences between species in the fungi consumed may be related to differences in selectivity, foraging, or microhabitat use. If fungal resources are limiting, competition for such resources may be important in this and other small mammal communities. The amount and diversity of hypogeal fungi consumed by the two animal species makes them both important spore dispersal agents in forest ecosystems. The capacity of R. fuscipes and other seasonally mycophagous mammals in this role may be more important than previously recognized, especially in habitats where species of the Potoroidae are absent.  相似文献   

4.
Elemental stoichiometry of Drosophila and their hosts   总被引:5,自引:1,他引:4  
1. Nitrogen (N) and phosphorus (P) availabilities are important ecological determinants of resource use in nature. Despite the wide range of hosts used by species of the genus Drosophila , elemental composition of natural resources of these flies has never been investigated.
2. Total body N and P contents were determined in seven species of wild-caught Drosophila , their natural hosts, and artificial diets routinely used to rear these flies in the laboratory. The flies tested included D. hydei, D. arizonae, D. simulans and D. pseudoobscura collected from rotting fruit (melons), and the cactophilic D. nigrospiracula, D. mojavensis and D. pachea collected from their specific host plants, Saguaro, Organpipe and Senita cactus, respectively.
3. Natural hosts varied in elemental composition, with fruit showing higher N (2·8–4·3% dry mass) and P (0·50–0·67%) levels compared with cacti (0·5–1·6% N; 0·01–0·29% P). No consistent differences in N and P levels were found between healthy and necrotic cactus tissue.
4. Total body N and P also varied among Drosophila species. This variation mirrored the levels of N and P found in the respective hosts and laboratory diets. N:P ratios were consistently lower in female flies compared with conspecific males suggesting phosphorus demands during oogenesis are high.
5. Potential mechanisms by which Drosophila deal with N or P limitation in nature are discussed.  相似文献   

5.
Little is known about what determines patterns of host association of horizontally transmitted parasites over evolutionary timescales. We examine the evolution of associations between mushroom-feeding Drosophila flies (Diptera: Drosophilidae), particularly in the quinaria and testacea species groups, and their horizontally transmitted Howardula nematode parasites (Tylenchida: Allantonematidae). Howardula species were identified by molecular characterization of nematodes collected from wild-caught flies. In addition, DNA sequence data is used to infer the phylogenetic relationships of both host Drosophila (mtDNA: COI, II, III) and their Howardula parasites (rDNA: 18S, ITS1; mtDNA: COI). Host and parasite phylogenies are not congruent, with patterns of host association resulting from frequent and sometimes rapid host colonizations. Drosophila-parasitic Howardula are not monophyletic, and host switches have occurred between Drosophila and distantly related mycophagous sphaerocerid flies. There is evidence for some phylogenetic association between parasites and hosts, with some nematode clades associated with certain host lineages. Overall, these host associations are highly dynamic, and appear to be driven by a combination of repeated opportunities for host colonization due to shared breeding sites and large potential host ranges of the nematodes.  相似文献   

6.
1. Dispersal is essential for locating mates, new resources, and to escape unfavourable conditions. Parasitism can impact a host's ability to perform energetically demanding activities such as long‐distance flight, with important consequences for gene flow and meta‐population dynamics. 2. Ectoparasites, in particular, can adversely affect host flight performance by diminishing flight aerodynamics and/or by inflicting physiological damage while feeding on host tissue. 3. Experimental flight assays were conducted using two fruit fly‐mite systems: Drosophila nigrospiracula (Patterson and Wheeler) – Macrocheles subbadius (Berlese) and D. hydei (Sturtevan) – M. muscaedomesticae (Scopoli). Flies that are burdened by mites are expected to exhibit lower flight endurance compared to uninfected flies. 4. The results show that the presence of mites (attached) significantly decreased flight endurance by 57% and 78% compared to uninfected D. nigrospiracula and D. hydei, respectively. The physiological damage caused by M. subbadius was revealed through a 53% decline in flight time among previously infected flies (mites removed just prior to flight assay). Surprisingly, the presumably phoretic M. muscaedomesticae also caused a 62% reduction in flight endurance among previously infected D. hydei. 5. These results suggest a strong deleterious effect of ectoparasitic mites on host flight performance, mediated by a reduction in flight aerodynamics and damage to host physiology. Adverse effects on host flight and/or dispersal may have broad implications for gene flow, population genetic structure, and local adaptation in both host and parasite meta‐populations.  相似文献   

7.
8.
Assemblages of drosophilids have been characterised in several environments of the Brazilian territory, like the Atlantic Rain Forest, urban areas, cerrados, the Amazon Forest, and others. The present survey is the first attempt to characterise the fauna of Drosophilidae in mangrove forests, an environment typical of tropical coasts worldwide. Twenty-eight samples were collected from the three main mangrove forests of Santa Catarina Island, southern Brazil, using banana-baited traps hung in trees. Samples were taken in January (summer), April (autumn), July (winter) and October (spring) between July 2002 and July 2005. In total, 82,942 specimens of drosophilids were caught, belonging to 69 species of six genera - Amiota Loew, Drosophila Fallén, Leucophenga Mik, Scaptodrosophila Duda, Zaprionus Coquillett and Zygothrica Wiedemann. The high abundance of D. simulans Sturtevant was remarkable, with some notable peaks of D. malerkotliana Parshad & Paika in autumn samples. Other common species were Zaprionus indianus Gupta, D. mediostriata Duda and D. willistoni Sturtevant. We also collected 45,826 flies of family Curtonotidae, the sister-group of Drosophilidae virtually absent in other environments. The assemblages of drosophilids were very similar in the three mangrove forests surveyed, despite the different surrounding environments. In general, the species sampled in the mangroves were the same as those observed in the surrounding environments, but in varying abundances. This suggests that drosophilids are differently affected by environmental pressures operating in mangroves.  相似文献   

9.
S. Raghu  A. R. Clarke  J. Bradley 《Oikos》2002,97(3):319-328
Insects utilize resources in their environment with the aid of mutualistic or symbiotic mediation by microorganisms. Some insect species such as ants and termites often have complex ecological and evolutionary associations with their symbionts, while the nature and functional significance of such associations in non-social insects is often unclear. In the Dacinae (Diptera: Tephritidae), specific Enterobacteriaceae ( Erwinia herbicola , Enterobacter cloacae , Klebsiella oxytoca ) are believed to mediate interactions between the adult fruit flies and the larval host plant. This bacterial mediation is hypothesized as being integral to the larval host plant being the "centre of activity" of the fly. Using a non-pest, monophagous fruit fly ( Bactrocera cacuminata [Hering]), we tested this hypothesis by manipulating the fruiting state of its larval host plant ( Solanum mauritianum Scopoli) and subsequently assessing insect behaviour and phylloplane microflora on those hosts. On host plants that had never fruited, few flies or bacterial colonies were recorded, consistent with hypothesis expectations. On fruiting host plants or plants that had had their fruit removed, bacterial colonies were present; again consistent with expectation. However, few flies were recorded on fruit-removed plants and all fly behaviours, other than resting or oviposition, were rare or absent on any hosts; inconsistent with expectation. The general pattern of results suggested that female flies coming to oviposit on fruiting hosts were spreading Enterobacteriaceae, but such spread was incidental and not part of some mutualistic interaction between fruit flies and bacteria.  相似文献   

10.
Across three tropical Australian sclerophyll forest types, site-specific environmental variables could explain the distribution of both quantity (abundance and biomass) and richness (genus and species) of hypogeous fungi sporocarps. Quantity was significantly higher in the Allocasuarina forest sites that had high soil nitrogen but low phosphorous. Three genera of hypogeous fungi were found exclusively in Allocasuarina forest sites including Gummiglobus, Labyrinthomyces and Octaviania, as were some species of Castoreum, Chondrogaster, Endogone, Hysterangium and Russula. However, the forest types did not all group according to site-scale variables and subsequently the taxonomic assemblages were not significantly different between the three forest types. At site scale, significant negative relationships were found between phosphorous concentration and the quantity of hypogeous fungi sporocarps. Using a multivariate information theoretic approach, there were other more plausible models to explain the patterns of sporocarp richness. Both the mean number of fungal genera and species increased with the number of Allocasuarina stems, at the same time decreasing with the number of Eucalyptus stems. The optimal conditions for promoting hypogeous fungi sporocarp quantity and sporocarp richness appear to be related to the presence and abundance of Allocasuarina (Casuarinaceae) host trees. Allocasuarina tree species may have a higher host receptivity for ectomycorrhizal hypogeous fungi species that provide an important food resource for Australian mycophagous animals.  相似文献   

11.
Newton (in: Wheeler, Q.; Blackwell, M. (eds), Fungus-Insect Relationships: Perspectives in Ecology and Evolution . New York: Columbia University Press, pp. 302–353, 1984) characterized five types of Sepedophilus larvae based on head structures and the external and internal features of the head of larvae of Sepedophilus type C are described in detail herein. A functional interpretation of structures involved with feeding is made on the basis of morphological and behavioural observations. Types C and D larvae possess tube-like epipharyngeal structures resembling dipteran labial pseudotrachea, which may play an important role in a specialized liquid-feeding process. Based on a preliminary analysis of head characters delimited by Newton (1984) it is shown that mycophagy has evolved once from a predatory ancestor, although some Sepedophilus groups may have mixed feeding strategies. The epipharyngeal tubes are demonstrated to be unique to mycophagous Sepedophilus in Coleoptera whereas the overall head structure is very similar to mycophagous larvae in the family Sphindidae.  相似文献   

12.
Soto EM  Soto IM  Cortese MD  Hasson E 《Fly》2011,5(2):102-109
The choice of egg laying site and progeny's performance in a rearing site are important components of habitat selection. Despite the huge amount of genetic, morphological, behavioral and physiological data regarding Drosophila melanogaster Meigen and D. simulans Sturtevant, oviposition site preferences remain poorly known. We investigated resource preference (acceptance and choice) and performance (measured as larval viability, developmental time and wing size) in Vitis vinifera Linneo (grape) and Cydonia oblonga Miller (quince), two fruit plants that D. melanogaster and D. simulans use as breeding substrates in Western Argentina. Females of both species preferred V. vinifera over C. oblonga when offered to lay eggs on grape and/or quince, with D. melanogaster showing a more biased preference for V. vinifera than its sibling. Concerning performance, flies reared in C. oblonga developed faster than in V. vinifera, regardless of the species and D. simulans had a shorter developmental time than D. melanogaster. We also observed inter and intraspecific (between flies reared in different resources) differences in wing size and shape. Our study provides novel data concerning ecological aspects scarcely addressed in these species, and suggest that the use of different resource may be a relevant factor in their recent evolutionary history.  相似文献   

13.
樱桃新害虫黑腹果蝇的生物学特性   总被引:4,自引:0,他引:4  
郭建明 《昆虫知识》2007,44(5):743-745
果蝇是近几年发现危害樱桃果实的一类重要害虫,在国内外樱桃产区均有发生。天水地区危害甜樱桃的果蝇有3个种,分别是黑腹果蝇Drosophila melanogaster Meigen、铃木氏果蝇Drosophila suzukii(Matsumura)和海德氏果蝇Drosophila hydei(Sturtevant),黑腹果蝇为优势种。作者记述黑腹果蝇对甜樱桃果实的危害情况、寄主范围及其生活史、生活习性、发育历期与温度的关系等,调查发现蚂蚁是樱桃果蝇的天敌之一。  相似文献   

14.
Epichloë species are self incompatible (heterothallic) fungi that must be fertilized by spermatia from individuals of opposite mating type for successful sexual reproduction to occur. Female flies of the genus Botanophila act as vectors of the fungi by ingesting and defecating spermatia (gametes) onto fungal stromata (fruiting bodies) after oviposition. Larvae feed and develop on the stromata and thus maintain a symbiotic relationship with Epichloë fungi. We hypothesized that sole dependence on fertilized stromata as a food source would promote specialization by flies to single compatible host species and that this specialization would promote reproductive isolation among Epichloë species. Analysis of progeny of ascospores from experimental field plots in Zurich, Switzerland, indicated prevalence of specific matings between stromata of the same host, and thus was consistent with the hypothesis that flies are species-specific in their visitation behaviour. Genetic analyses of spermatia contained in the faeces of individual flies also gave some support for this hypothesis. We recovered spermatia of 4 different Epichloë species from fly faeces. Comparison of spermatia found in fly faeces to those available from stromata showed flies avoided Epichloë clarkii and may have preferred Epichloë typhina . Interestingly, these are the only two Epichloë species known to be interfertile with one another. Individual flies tended to carry spermatia predominantly from one fungal species. Thus, flies may adopt a type of "majoring" and "minoring" behaviour when visiting fungi. Yet, Botanophila flies are not monolectic and often visited all hosts that were available within screened cages. In addition to any reproductive isolation flies may provide to some fungal species, differences in competitiveness among spermatia of different species deposited on the same stroma may favor intraspecific matings.  相似文献   

15.
In a host–parasitoid system comprising mycophagous drosophilids and their parasitoids, the drosophilid and parasitoid species assemblages, host use, and the prevalence of parasitism were assessed, and the “disproportionate parasitism hypothesis” was examined with consideration given to yearly variations. The mycophagous drosophilids, their fungal food resources and parasitoids were studied by carrying out an intensive census throughout the activity seasons of 4 years (2000–2003) in Hokkaido, northern Japan. Five hymenopterous parasitoid species, four braconids and one eucoilid, were found. Parasitoids of mycophagous drosophilids are reported for the first time from Asia. Most parasitism (99.2%) was by braconids, in contrast to the dominance of eucoilids in Europe. Parasitism was restricted to the summer, and the rate was high from early July to early August every year. There was considerable yearly variation in the composition of abundant fungus, drosophilid and parasitoid species, especially between 2000 and 2001. The alternation of dominant host species was coupled with the alternation of dominant parasitoid species that differed in host use. Despite the yearly variation in the system, the most dominant host species suffered disproportionately heavy parasitism by the correspondingly dominant parasitoid species every year. The parasitism rate was positively correlated with the relative host abundance. This thus indicates that the disproportionate parasitism mechanism may operate, via which species coexistence is promoted by a higher rate of parasitism of the dominant species.  相似文献   

16.
Summary 1. To determine feeding links between primary producers, invertebrates and fish, stable isotope analyses and gut content analyses of fish were conducted on the components of four shallow, eutrophic to hypertrophic, plant-dominated lakes.
2. Although separation of basal resources was possible, the diets of both fish and invertebrates were broad, comprising food from different compartments (planktonic, epiphytic/benthic), as well as from different trophic levels.
3. Mixing models were used to determine the extent to which periphyton production supported higher trophic levels. Only one species of invertebrate relied upon periphyton production exclusively.
4. Fish density affected the diets of invertebrates. The response was different for planktonic and epiphytic/benthic invertebrates. The proportion of periphyton production in the diets of zooplankton appeared to increase with fish density, whilst it decreased for other invertebrates.
5. As all zooplankton samples were collected in the open water at dusk, these results are further evidence for the diurnal horizontal migration of zooplankton. Although not conclusive, they are consistent with a behavioural response by invertebrates and zooplankton in the presence of fish.  相似文献   

17.
Abstract. 1. In central Japan, Drosophila curviceps Okada and Kurokawa was collected in spring and autumn but not in summer at lowlands (alt. 500–1200 m), while it was collected only in summer at highlands (1500–2000 m). Experiments on its thermal tolerance suggested that summer heat at the lowlands and winter low temperatures at the highlands were adverse to this species. It is considered that this species escapes from these extreme temperatures by undergoing seasonal migration between the lowlands and the highlands. This species had no photo-periodic diapause and bred at both lowlands and highlands.
2. D.immigrans Sturtevant was less cold-hardy but more heat-tolerant than D.curviceps. It is considered that this species is unable to overwinter outdoors at least in the study areas (i.e. alt. 500m or higher in central Japan) and its populations in these areas originate with migrants from warmer areas.
3. D.albomicans Duda, a subtropical species, was less cold-hardy but more heat-tolerant than the above two species.
4. Climatic adaptations and distributions of these species are discussed with reference to their thermal tolerance.  相似文献   

18.
Host selection by a mycophagous fly and its impact on fly survival   总被引:1,自引:0,他引:1  
Epichloë fungi interact with Botanophila flies in a co-evolved mutualism that appears to be analogous to angiosperm pollinator-parasite systems. Female flies act as vectors of fungal spores as they lay eggs on the fungi which grow within and on grass stems. To understand selective pressures operating on choice of host fungi by flies, we monitored the interaction of two species of Epichloë with Botanophila at two sites in southern England. At one site (Ashurst), the hosts Epichloë clarkii and Epichloë baconii co-occurred, while at a second site (Farm Gate), only E. clarkii was present. Flies ovipositing on E. baconii showed preferences for large, somewhat isolated fungi occurring within small clumps of grass. Flies ovipositing on E. clarkii at the Ashurst site did not select hosts based on any physical features of fungi that we measured. However, flies ovipositing on E. clarkii at the Farm Gate site tended to prefer large fungi that occurred within small clumps of grass. Fungal characteristics preferred by the flies showed no correlation with egg/larval survivorship. Insect survival on E. clarkii varied between sites and was related to differences in egg dispersion among fungi at the two sites. The absence of an alternate host ( E. baconii ) was associated with greater aggregation of eggs on E. clarkii at the Farm Gate site and these insects experienced higher levels of mortality at this compared to the other site.  相似文献   

19.
Host selection patterns in insects breeding in bracket fungi   总被引:3,自引:0,他引:3  
Abstract.  1. Fungivorous insects are generally viewed as polyphagous, largely because most fungal fruiting bodies constitute an unpredictable resource. To examine the validity of this hypothesis, and degree of phylogenetic relatedness between the preferred hosts of the insects, host selection in the insect fauna of bracket fungi was studied, using data obtained both from the field and the literature.
2. More than half (53%) of the insect species breeding in them appeared to be monophagous.
3. Modern phylogenies explained the host selection patterns better than older classifications, since non-monophagous species of beetles frequently used hosts that are closely related to each other.
4. The hypothesis that polyphagous species use more heavily decayed fruiting bodies than monophagous species was verified for insects breeding in Fomes fomentarius . The results indicate that the chemical composition of the fungi influences host selection.
5. It is suggested that fruiting bodies of bracket fungi differ from most other fungi in that their occurrence is more predictable. Therefore, the primary colonising fungivores generally attack only one host species, or a few hosts that are closely phylogenetically related. Polyphagous species generally colonise fruiting bodies after they have reached a certain stage of decay, thus escaping their chemical defence.  相似文献   

20.
Approximately one-half of the members of the Drosophila quinaria species-group are mycophagous. The mushroom-breeding species D. falleni, D. recens, and D. phalerata are far more tolerant of the mushroom toxin α-amanitin than are D. guinaria, D. palustris, and D. subpalustris, which breed in decaying water plants. The non-mycophagous species, however, are physiologically capable of larval development in mushrooms, showing that high levels of amanitin tolerance are not necessary for mycophagy. A primary selective advantage of amanitin tolerance among the mycophagous species is that it allows them to breed in mushrooms that are toxic to nematodes that infest Drosophila in other fungi and render them infertile. Parasitism, then, may be an important factor governing evolutionary patterns of resource utilization in these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号