首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This investigation examined the relationship among plasma catecholamines, the blood lactate threshold (TLa), and the ventilatory threshold (TVE) in highly trained endurance athletes. Six competitive cyclists and six varsity cross-country runners performed a graded exercise test via two different modalities: treadmill running and bicycle ergometry. Although maximal oxygen consumption (VO2 max) did not differ significantly for the cyclists for treadmill running and cycling (64.6 +/- 1.0 and 63.5 +/- 0.4 ml O2.kg-1-min-1, respectively), both TLa and TVE occurred at a relatively earlier work load during the treadmill run. The opposite was true for the runners as TLa and TVE appeared at an earlier percent of VO2max during cycling compared with treadmill running (60.0 +/- 1.7 vs. 75.0 +/- 4.0%, respectively, TLa). The inflection in plasma epinephrine shifted in an identical manner and occurred simultaneously with that of TLa (r = 0.97) regardless of the testing protocol or training status. Although a high correlation (r = 0.86) existed for the shift in TVE and TLa, this relationship was not as strong as was seen with plasma epinephrine. The results suggest that a causal relationship existed between the inflection in plasma epinephrine and TLa during a graded exercise test. This association was not as strong for TVE and TLa.  相似文献   

2.
Eight male subjects (24 +/- 1 years old) performed graded ergocycle exercises in normoxic (N) and acute hypoxic (H) conditions (14.5% O2). VO2max decreased from 55.5 +/- 1.3 to 45.8 +/- 1.4 ml . kg-1 . min-1 in H condition. Plasma glucose and free fatty acid concentrations remained unchanged throughout exercise in both conditions. Increase in blood lactate concentration was associated with relative workload in both conditions. At VO2max lactate concentrations were similar in the two conditions, plasma insulin, glucagon, and LH concentrations did not significantly change in either. Plasma delta 4-androstenedione and testosterone increased in a similar manner in both conditions. Finally plasma norepinephrine concentration reached at VO2max was significantly lower in hypoxia. These results suggest that acute moderate hypoxia does not affect metabolic and hormonal responses to short exercise performed at similar relative workloads, i.e. when the reduction of VO2max due to hypoxia is taken into consideration. The lower catecholamine response to maximal exercise under acute hypoxia might suggest that the sympathetic response could be related to relative as well as absolute workloads.  相似文献   

3.
Plasma free catecholamines rise during exercise, but sulfoconjugated catecholamines reportedly fall. This study examined the relationship between exercise intensity and circulating levels of sulfoconjugated norepinephrine, epinephrine, and dopamine. Seven exercise-trained men biked at approximately 30, 60, and 90% of their individual maximal oxygen consumption (VO2max) for 8 min. The 90% VO2max period resulted in significantly increased plasma free norepinephrine (rest, 219 +/- 85; exercise, 2,738 +/- 1,149 pg/ml; P less than or equal to 0.01) and epinephrine (rest, 49 +/- 49; exercise, 555 +/- 516 pg/ml; P less than or equal to 0.05). These changes were accompanied by consistent increases in sulfoconjugated norepinephrine at both the 60% (rest, 852 +/- 292; exercise, 1,431 +/- 639; P less than or equal to 0.05) and 90% (rest, 859 +/- 311; exercise, 2,223 +/- 1,015; P less than or equal to 0.05) VO2max periods. Plasma sulfoconjugated epinephrine and dopamine displayed erratic changes at the three exercise intensities. These findings suggest that sulfoconjugated norepinephrine rises during high-intensity exercise.  相似文献   

4.
Endurance training of older men: responses to submaximal exercise.   总被引:2,自引:0,他引:2  
The purpose of this study was to quantify the exercise response of older subjects on a time-to-fatigue (TTF) submaximal performance test before and after a training program. Eight older men (67.4 +/- 4.8 yr) performed two maximal treadmill tests to determine maximum oxygen uptake (VO2max) and ventilation threshold (TVE) and a constant-load submaximal exercise treadmill test that required an oxygen uptake (VO2) between TVE and VO2max. The submaximal test, performed at the same absolute work rate before and after the training program, was performed to volitional fatigue to measure endurance time. The men trained under supervision at an individualized pace representing approximately 70% of VO2max (80% maximum heart rate) for 1 h, four times per week for 9 wk. Significant increases were demonstrated for VO2max (ml.kg-1.min-1; 10.6%); maximal ventilation (VE, l/min; 11.6%), and TVE (l/min; 9.8%). Weight decreased 2.1%. Performance time on the TTF test increased by 180% (7.3 +/- 3.0 to 20.4 +/- 13.5 min). The similar end points for VO2, VE, and heart rate during the TTF and maximal treadmill tests established that the TTF test was stopped because of physiological limitations. The increase in performance time among the subjects was significantly correlated with improvements in VO2max and TVE, with the submaximal work rate representing a VO2 above TVE by 88% of the difference between TVE and VO2max pretraining and 73% of this difference on posttraining values.  相似文献   

5.
The effects of supramaximal exercise on blood glucose, insulin, and catecholamine responses were examined in 7 healthy male physical education students (mean +/- SD: age = 21 +/- 1.2 years; VO2max = 54 +/- 6 ml X kg-1 X min-1) in response to the following three dietary conditions: a normal mixed diet (N); a 24-h low carbohydrate (CHO) diet intended to reduce liver glycogen content (D1); and a 24-h low CHO diet preceded by a leg muscle CHO overloading protocol intended to reduce hepatic glycogen content with increased muscle glycogen store (D2). Exercise was performed on a bicycle ergometer at an exercise intensity of 130% VO2max for 90 s. Irrespective of the dietary manipulation, supramaximal exercise was associated with a similar significant (p less than 0.01) increase in the exercise and recovery plasma glucose values. The increase in blood glucose levels was accompanied by a similar increase in insulin concentrations in all three groups despite lower resting insulin levels in conditions D1 and D2. Lactate concentrations were higher during the early phase of the recovery period in the D2 as compared to the N condition. At cessation of exercise, epinephrine and norepinephrine were greatly elevated in all three conditions. These results indicate that the increase in plasma glucose and insulin associated with very high intensity exercise, persists in spite of dietary manipulations intended to reduce liver glycogen content or increase muscle glycogen store.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To examine the influence of an increase in central blood volume with head-out water immersion (WI) on the sympathoadrenal response to graded dynamic exercise, nine healthy men underwent upright leg cycle exercise on land and with WI. Plasma norepinephrine and epinephrine concentrations were used as indexes of overall sympathoadrenal activity. Oxygen consumption (VO2), heart rate, systolic blood pressure, and plasma concentrations of norepinephrine, epinephrine, and lactate were determined at work loads corresponding to approximately 40, 60, 80, and 100% peak VO2. Peak VO2 did not differ on land and with WI. Plasma norepinephrine concentration was reduced (P less than 0.05) at 80 and 100% peak VO2 with WI and on land, respectively. Plasma epinephrine and lactate concentrations were similar on land and with WI at the three submaximal work stages, but both were reduced (P less than 0.05) at peak exertion with WI. Heart rate was lower (P less than 0.05) at the three highest work intensities with WI. These results suggest that the central shift in blood volume with WI reduces the sympathoadrenal response to high-intensity dynamic exercise.  相似文献   

7.
In order to describe fluid-electrolyte shift and endocrine response to exercise under moderate acute hypoxia, 8 healthy male subjects (24 +/- 3 years old) were evaluated at 40, 60, 80 and 100% VO2 max in normoxic (N) and hypoxic (H) conditions (14.5% O2). VO2 max decreased from 55.5 +/- 1.3 to 45.8 +/- 1.4 ml/kg X min in H condition. Plasma volume reductions with increasing relative workloads were similar in N (9.4%) and H (9.9%) conditions. The rise in plasma osmolality was in part related to blood lactate accumulation which occurred in both conditions. However, variations in plasma solute content and osmolality suggested that exercise under hypoxia results in a greater electrolyte loss from vascular space and in a greater K+ loss from working skeletal muscles. Increase in catecholamine concentrations were similar in normoxic and hypoxic conditions except for lower maximal norepinephrine concentration under hypoxia. Finally, although plasma renin activity increased with workload in both conditions, plasma aldosterone did not significantly change. This dissociation between renin and aldosterone suggest that aldosterone release during exercise might depend upon other factors. However, changes in plasma potassium concentration do not appear as an important stimulus for aldosterone secretion during exercise.  相似文献   

8.
Nine male subjects performed continuous incremental exercise on a bicycle ergometer pedaling at 50 and 90 rpm in a normal glycogen state (NG) and at 50 rpm in a glycogen-depleted state (GD) to determine if alterations in pedaling frequency and muscle glycogen content would affect their "anaerobic thresholds." Ventilatory [T(vent)] and lactate [T(lac)] thresholds were identified as the points after which expired minute volume and blood lactate began to increase nonlinearly as a function of work rate. The GD protocol elicited a significant divergence between the two thresholds shifting the T(vent) to a lesser and the T(lac) to a greater work rate relative to the NG state. When the pedaling frequency was increased to 90 rpm in the NG condition, the T(lac) was shifted to a lesser work rate relative to the 50-rpm NG condition. A correlation of only 0.71 was obtained between subjects' T(vent) and T(lac). In subjects of less than 70 kg body wt, the T(lac) came at a work rate 400 kg.m.min-1 less than in subjects of greater than 80 kg body wt despite equivalent O2 uptake. The observation that the T(vent) and T(lac) could be manipulated independently of each other reveals limitations in using the T(vent) to estimate the so-called anaerobic threshold.  相似文献   

9.
Determinants of endurance in well-trained cyclists   总被引:7,自引:0,他引:7  
Fourteen competitive cyclists who possessed a similar maximum O2 consumption (VO2 max; range, 4.6-5.0 l/min) were compared regarding blood lactate responses, glycogen usage, and endurance during submaximal exercise. Seven subjects reached their blood lactate threshold (LT) during exercise of a relatively low intensity (group L) (i.e., 65.8 +/- 1.7% VO2 max), whereas exercise of a relatively high intensity was required to elicit LT in the other seven men (group H) (i.e., 81.5 +/- 1.8% VO2 max; P less than 0.001). Time to fatigue during exercise at 88% of VO2 max was more than twofold longer in group H compared with group L (60.8 +/- 3.1 vs. 29.1 +/- 5.0 min; P less than 0.001). Over 92% of the variance in performance was related to the % VO2 max at LT and muscle capillary density. The vastus lateralis muscle of group L was stressed more than that of group H during submaximal cycling (i.e., 79% VO2 max), as reflected by more than a twofold greater (P less than 0.001) rate of glycogen utilization and blood lactate concentration. The quality of the vastus lateralis in groups H and L was similar regarding mitochondrial enzyme activity, whereas group H possessed a greater percentage of type I muscle fibers (66.7 +/- 5.2 vs. 46.9 +/- 3.8; P less than 0.01). The differing metabolic responses to submaximal exercise observed between the two groups appeared to be specific to the leg extension phase of cycling, since the blood lactate responses of the two groups were comparable during uphill running. These data indicate that endurance can vary greatly among individuals with an equal VO2 max.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Gozal, David, Patrice Thiriet, Jean Marie Cottet-Emard,Dieudonné Wouassi, Emmanuel Bitanga, André Geyssant, JeanMarc Pequignot, and Marcel Sagnol. Glucose administration before exercise modulates catecholaminergic responses in glycogen-depleted subjects. J. Appl. Physiol. 82(1):248-256, 1997.In glycogen-depleted subjects (GD) a nonlinearincrease in epinephrine (Epi) and norepinephrine (NE) parallels bloodlactate (La) during graded exercise. The effect of glucose(Glc) supplementation and route of administration on theserelationships was studied in 26 GD athletes who were randomly assignedto receive 1.3 g/kg Glc by slow intravenous infusion (IV;n = 9), oral administration (PO;n = 9), or artificially sweetenedplacebo in 1 liter of water (Asp; n = 8) in the 2 h preceding a graded maximal exercise. Performance and Lawere similar among the three groups in normal glycogen (NG) or GDconditions. However, slightly improved performances were observed in GDcompared with NG and were associated with a shift to the right in Lacurves. Blood Glc concentrations were higher in IV and PO beforeexercise, but they rapidly decreased to lowest levels in IV, graduallydecreased over time in PO, and remained stable in Asp or NG. Insulinconcentrations were highest in IV and lowest in Asp and NG at onset ofexercise, rapidly decreasing in IV and PO although remaining at higherlevels than in Asp or NG. In contrast, higher serum levels of freefatty acids were measured during exercise in Asp with no significant differences in glucagon or glycerol among the three groups. Free andsulfated NE increases were smaller in IV than in PO and Asp onexhaustion. In contrast, free and conjugated Epi were most increased inIV, with smallest increases in Asp. Dopamine levels were most increasedin IV at exhaustion. We conclude that the changes of Epi and NEconcentrations, associated with the activation of glucoregulatorymechanisms, including hyperinsulinemia, display different magnitude andtime courses during exercise in GD subjects who receive oral vs.intravenous load of Glc before exercise. We speculate that themagnitude of insulin surge after acutely increased Glc before exercisein GD subjects may exert dissociative effects on adrenal-dependentglycogenolysis and on sympathetic responses.

  相似文献   

11.
To determine whether increases in muscle mitochondrial capacity are necessary for the characteristic lower exercise glycogen loss and lactate concentration observed during exercise in the trained state, we have employed a short-term training model involving 2 h of cycling per day at 67% maximal O2 uptake (VO2max) for 5-7 consecutive days. Before and after training, biopsies were extracted from the vastus lateralis of nine male subjects during a continuous exercise challenge consisting of 30 min of work at 67% VO2max followed by 30 min at 76% VO2max. Analysis of samples at 0, 15, 20, and 60 min indicated a pronounced reduction (P less than 0.05) in glycogen utilization after training. Reductions in glycogen utilization were accompanied by reductions (P less than 0.05) in muscle lactate concentration (mmol/kg dry wt) at 15 min [37.4 +/- 9.3 (SE) vs. 20.2 +/- 5.3], 30 min (30.5 +/- 6.9 vs. 17.6 +/- 3.8), and 60 min (26.5 +/- 5.8 vs. 17.8 +/- 3.5) of exercise. Maximal aerobic power, VO2max (l/min) was unaffected by the training (3.99 +/- 0.21 vs. 4.05 +/- 0.26). Measurements of maximal activities of enzymes representative of the citric acid cycle (succinic dehydrogenase and citrate synthase) were similar before and after the training. It is concluded that, in the voluntary exercising human, altered metabolic events are an early adaptive response to training and need not be accompanied by changes in muscle mitochondrial capacity.  相似文献   

12.
This study was designed to investigate the effect of short-term, submaximal training on changes in blood substrates, metabolites, and hormonal concentrations during prolonged exercise at the same power output. Cycle training was performed daily by eight male subjects (VO2max = 53.0 +/- 2.0 mL.kg-1.min-1, mean +/- SE) for 10-12 days with each exercise session lasting for 2 h at an average intensity of 59% of VO2max. This training protocol resulted in reductions (p less than 0.05) in blood lactate concentration (mM) at 15 min (2.96 +/- 0.46 vs. 1.73 +/- 0.23), 30 min (2.92 +/- 0.46 vs. 1.70 +/- 0.22), 60 min (2.96 +/- 0.53 vs. 1.72 +/- 0.29), and 90 min (2.58 +/- 1.3 vs. 1.62 +/- 0.23) of exercise. The reduction in blood lactate was also accompanied by lower (p less than 0.05) concentrations of both ammonia and uric acid. Similarly, following training lower concentrations (p less than 0.05) were observed for blood beta-hydroxybutyrate (60 and 90 min) and serum free fatty acids (90 min). Blood glucose (15 and 30 min) and blood glycerol (30 and 60 min) were higher (p less than 0.05) following training, whereas blood alanine and pyruvate were unaffected. For the hormones insulin, glucagon, epinephrine, and norepinephrine, only epinephrine and norepinephrine were altered with training. For both of the catecholamines, the exercise-induced increase was blunted (p less than 0.05) at both 60 and 90 min. As indicated by the changes in blood lactate, ammonia, and uric acid, a depression in glycolysis and IMP formation is suggested as an early adaptive response to prolonged submaximal exercise training.  相似文献   

13.
The purpose of this study was to assess the effects of a 2 h cycle exercise (50% VO2max) on heart rate (HR) and blood pressure (BP), and on plasma epinephrine (E) and norepinephrine (NE) concentrations, during the recovery period in seven normotensive subjects. Measurements were made at rest in supine (20 min) and standing (10 min) positions, during isometric exercise (hand-grip, 3 min, 25% maximal voluntary, contraction), in response to a mild psychosocial challenge (Stroop conflicting color word task) and during a 5-min period of light exercise (42 +/- 3% VO2max). Data were compared to measurements taken on another occasion under similar experimental conditions, without a previous exercise bout (control). The results showed HR to be slightly elevated in all conditions following the exercise bout. However, diastolic and systolic BP during the recovery period following exercise were not significantly different from the values observed in the control situation. Plasma NE concentrations in supine position and in response to the various physiological and/or psychosocial challenges were similar in the control situation and during the recovery period following exercise. On the other hand plasma E (nmol.1-1) was about 50% lower at rest (0.11 +/- 0.03 vs 0.23 +/- 0.04) as well as in response to hand-grip (0.21 +/- 0.04 vs 0.41 +/- 0.20) and the Stroop-test (0.21 +/- 0.05 vs 0.41 +/- 0.15) following the exercise bout.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We tested the hypothesis that the lactate threshold (Tlac) during incremental exercise could be increased significantly during the first 3 wk of endurance training without any concomitant change in the ventilatory threshold (Tvent). Tvent is defined as O2 uptake (VO2) at which ventilatory equivalent for O2 [expired ventilation per VO2 (VE/VO2)] increased without a simultaneous increase in the ventilatory equivalent for CO2 (VE/VCO2). Weekly measurements of ventilatory gas exchange and blood lactate responses during incremental and steady-rate exercise were performed on six subjects (4 male; 2 female) who exercised 6 days/wk, 30 min/session at 70-80% of pretraining VO2max for 3 wk. Pretraining Tlac and Tvent were not significantly different. After 3 wk of training, significant increases (P less than 0.05) occurred for mean (+/- SE) VO2max (392 +/- 103 ml/min) and Tlac (482 +/- 135 ml/min). Tvent did not change during the 3 wk of training, despite significant (P less than 0.05) reductions in VE responses to both incremental and steady-rate exercise. Thus ventilatory adaptations to exercise during the first 3 wk of exercise training were not accompanied by a detectable alteration in the ventilatory "threshold" during a 1-min incremental exercise protocol. The mean absolute difference between pairs of Tlac and Tvent posttraining was 499 ml/min. Despite the significant training-induced dissociation between Tlac and Tvent a high correlation between the two parameters was obtained posttraining (r = 0.86, P less than 0.05). These results indicate a coincidental rather than causal relationship.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Epinephrine increases glycogenolysis in resting skeletal muscle, but less is known about the effects of epinephrine on exercising muscle. To study this, epinephrine was given intraarterially to one leg during two-legged cycle exercise in nine healthy males. The epinephrine-stimulated (EPI) and non-stimulated (C) legs were compared with regard to glycogen, glucose, glucose 6-phosphate (G6P), alpha-glycerophosphate (alpha-GP), and lactate contents in muscle biopsies taken before and after the 45-min submaximal exercise, as well as brachial arterial-femoral venous (a-fv) differences for epinephrine, norepinephrine, lactate, glucose, and O2 during exercise. During exercise the arterial plasma epinephrine concentration was 4.8 +/- 0.8 nmol/l and the femoral venous epinephrine concentrations were 10.3 +/- 2.1 and 3.9 +/- 0.6 nmol/l, respectively, in the EPI and C leg. During exercise the a-fv difference for lactate was greater (-0.41 +/- 0.14 vs. -0.21 +/- 0.14 mmol/l; P less than 0.001), and the a-fv difference for glucose was smaller (0.07 +/- 0.12 vs. 0.24 +/- 0.12 mmol/l; P less than 0.01) in the EPI than in the C leg, but the a-fv differences for O2 were similar. Muscle glycogen depletion (137 +/- 63 vs. 99 +/- 43 mmol/kg dry muscle; P less than 0.1) and the muscle concentrations of glucose (P less than 0.05), alpha-GP (P less than 0.1), G6P (P greater than 0.1), and lactate (P greater than 0.1) tended to be higher in the EPI than the C leg after exercise. These findings suggest that physiological concentrations of epinephrine may enhance muscle glycogenolysis during submaximal exercise in male subjects.  相似文献   

16.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

17.
We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise.  相似文献   

18.
The purpose of this study was to determine the potential effects on progressive aerobic work while breathing through a new military type chemical and biological (CB) respirator loaded with three different types of purifying canisters. Twelve healthy well-motivated male subjects (mean age 23 +/- 3 years) participated in the study. Results indicated that mean maximal oxygen uptake (VO2max), time to exhaustion, respiratory exchange ratio, rate of perceived exertion, respiratory rate and tidal volume at exhaustion, maximal lactate and the 2-min post-exercise lactate were not significantly influenced when breathing with the respirator and the canisters in comparison to a laboratory valve. Mean pulmonary ventilation, however, was reduced by 21% while oxygen and carbon dioxide ventilatory equivalents were significantly lower by 9% and 8% respectively. Review of the stage-by-stage responses to the treadmill test between the laboratory valve and respirator/canister conditions indicated no significant differences (NS) in oxygen uptake but slightly lower heart rates (NS). Ventilation was not influenced by the canisters until 80% of VO2max at which time the mean oxygen ventilatory equivalent became significantly lower. Blood lactate was significantly depressed between 60% and 90% VO2max under the respirator/canister conditions. It was concluded that, although physiological adaptation occurred, breathing with the new CB respirator and each of the three purifying canisters had no detrimental effect on progressive aerobic work to exhaustion. However, prolonged work at intensities greater than 80-85% of VO2max would in all probability be impaired when breathing with the CB mask and the canisters.  相似文献   

19.
The purpose of this study was to investigate the validity of non-invasive lactate threshold estimation using ventilatory and pulmonary gas exchange indices under condition of acute hypoxia. Seven untrained males (21.4+/-1.2 years) performed two incremental exercise tests using an electromagnetically braked cycle ergometer: one breathing room air and other breathing 12 % O2. The lactate threshold was estimated using the following parameters: increase of ventilatory equivalent for O2 (VE/VO2) without increase of ventilatory equivalent for CO2 (VE/VCO2). It was also determined from the increase in blood lactate and decrease in standard bicarbonate. The VE/VO2 and lactate increase methods yielded the respective values for lactate threshold: 1.91+/-0.10 l/min (for the VE/VO2) vs. 1.89+/-0.1 l/min (for the lactate). However, in hypoxic condition, VE/VO2 started to increase prior to the actual threshold as determined from blood lactate response: 1.67+/-0.1 l/min (for the lactate) vs. 1.37+/-0.09 l/min (for the VE/VO2) (P=0.0001), i.e. resulted in pseudo-threshold behavior. In conclusion, the ventilatory and gas exchange indices provide an accurate lactate threshold. Although the potential for pseudo-threshold behavior of the standard ventilatory and gas exchange indices of the lactate threshold must be concerned if an incremental test is performed under hypoxic conditions in which carotid body chemosensitivity is increased.  相似文献   

20.
This study examined the influence of acute altitude (AL) exposure alone or in combination with metabolic acid-base manipulations on the exercise ventilatory and blood lactate responses. Four subjects performed a 4 min, 30 W incremental test to exhaustion at ground level (GL) and a 4 min, 20 W incremental test during three acute exposures to a simulated altitude of 4200 m; (i) normal (NAL), (ii) following 0.2 g.kg-1 ingestion of sodium bicarbonate (BAL), and (iii) following 0.5 g.day-1 ingestion of acetazolamide for 2 days prior to exposure (AAL). VE.VO2-1 increased progressively throughout the incremental tests at AL and the minimum value was not related to a change in the blood lactate response. In contrast, the VE.VCO2-1 decreased initially to reach a minimum value at the same power output for each altitude trial and was related to a lactate threshold defined by a log-log transformation (r = 0.78). This transformation of the blood lactate data was not influenced by the altered acid-base states. The relative exercise intensity corresponding to both a delta lactate of 1 mM and an absolute lactate of 4 mM was significantly increased during the AAL (79.9 +/- 12.9 and 93.9 +/- 13.7% VO2max, respectively) compared with NAL (59.1 +/- 5.5 and 78.0 +/- 5.8% VO2max, respectively). These data suggest that strong relationships exist between the ventilatory and blood lactate response during AL exposure and altered acid-base states. Further, it is concluded that, unless the acid-base status is known, the use of an absolute or delta lactate value to compare submaximal exercise should be interpreted with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号