首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of troxerutin on γ-radiation-induced DNA strand breaks in different tissues of mice in vivo and formations of the micronuclei were studied in human peripheral blood lymphocytes ex vivo and mice blood reticulocytes in vivo. Treatments with 1 mM troxerutin significantly inhibited the micronuclei induction in the human lymphocytes. Troxerutin protected the human peripheral blood leucocytes from radiation-induced DNA strand breaks in a concentration dependent manner under ex vivo condition of irradiation (2 Gy). Intraperitoneal administration of troxerutin (175 mg/kg body weight) to mice before and after whole body radiation exposure inhibited micronuclei formation in blood reticulocytes significantly. The administration of different doses (75, 125 and 175 mg/kg body weight) of troxerutin 1 h prior to 4 Gy γ-radiation exposure showed dose-dependent decrease in the yield of DNA strand breaks in murine blood leucocytes and bone marrow cells. The dose-dependent protection was more pronounced in bone marrow cells than in blood leucocytes. Administration of 175 mg/kg body weight of the drug (i.p.) 1 h prior or immediately after whole body irradiation of mice showed that the decrease in strand breaks depended on the post-irradiation interval at which the analysis was done. The observed time-dependent decrease in the DNA strand breaks could be attributed to enhanced DNA repair in troxerutin administered animals. Thus in addition to anti-erythrocytic, anti-thrombic, fibrinolytic and oedema-protective rheological activity, troxerutin offers protection against γ-radiation-induced micronuclei formation and DNA strand breaks and enhances repair of radiation-induced DNA strand breaks. (Mol Cell Biochem xxx: 57–68, 2005)  相似文献   

2.
Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a naturally occurring plant phenol. In vitro and in vivo studies have shown that this phytochemical protected DNA and membranes against ionizing radiation. Rat liver microsomes and plasmid pBR322 DNA were exposed to various doses of gamma radiation in presence and absence of GA. Exposure of the microsomes to gamma radiation resulted in the formation of peroxides of membrane lipids measured as thiobarbituric acid reactive substances and presence of GA during irradiation prevented the formation of lipid peroxidation. Gamma irradiation of plasmid DNA resulted in induction of strand breaks in DNA resulting in disappearance of the supercoiled (ccc) form. Presence of GA during irradiation protected the DNA from undergoing the strand breaks. In in vivo studies it was found that whole body exposure of mice to gamma radiation (4 Gy) increased the formation of lipid peroxides in various tissues and damage to cellular DNA (as measured by alkaline comet assay) in peripheral blood leucocytes. Administration of GA to mice prior to whole body radiation exposure reduced the peroxidation of lipids and the damage to the cellular DNA indicating in vivo radiation protection of membranes and DNA by GA. (Mol Cell Biochem 278: 111–117, 2005)  相似文献   

3.
We investigated the relationship between induction of radio-adaptive response and cell death in mouse normal and neoplastic epidermal cells. Mouse normal primary keratinocytes (PK), cancer-prone cells [v-ras Ha-transfected mouse keratinocytes (ras-PK), and line 308 cells (mouse skin papilloma cells which have activatedras Ha gene with A-to-T transversion at codon 61) were primed with a low dose of γ-rays (0.01 Gy), and were challenged with a high dose (4 Gy) after a 4 or 7 h interval. The induction of cell death in PK was 2–10 times higher and was also more rapid in PK than in ras-PK or 308 cells. Low-dose pretreatment with a 4 h interval decreased cell death, and this adaptive response was prominent in PK, whereas it was less obvious in the cases of ras-PK and 308 cells. The response of each protein kinase C (PKC) isozymes to high-dose radiation, especially PKCα, PKCδ, PKCε, and PKCη, were different between the normal andras oncogene-activated neoplastic keratinocytes; translocation of these isozymes to membrane occurred more rapidly in normal than in neoplastic cells. Furthermore, low-dose pretreatment did not induce the translocation of PKCδ in PK significantly more than in ras-PK and 308. Thus, the difference in the induction of radio-adaptive responses between mouse normal and neoplastic epidermal cells reflects difference in the rapidity of cell death, and responsiveness of PKC may affect this adaptive response. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Partial desiccation treatment was applied to improve plant regeneration response in irradiated in vitro cultures. Embryogenic callus cultures of sugarcane cv. Co-671 were exposed to different doses of gamma radiation (0–80 Gy) and radiation effect was evaluated in terms of post-irradiation callus recovery, growth and regeneration of plants. Proliferative capacity of cultures was inversely correlated with radiation dose as the percentage surviving cultures or white proliferating clumps (WPC) decreased as the radiation dose increased up to 80 Gy. LD50 was found to be around 20–30 Gy and at higher doses, poor regeneration frequency was observed after 4–6 weeks of post-irradiation culture. To stimulate regeneration response, irradiated cultures were subjected to partial desiccation for 6 h and the treatment resulted in enhanced plant regeneration response. The study suggests that partial desiccation treatment can be useful in stimulating regeneration response of irradiated in vitro cultures.  相似文献   

5.
The histone deacetylase inhibitor (HDAC), phenylbutyrate (PB), is a novel anti-tumor agent. Studies have demonstrated that HDAC inhibitors can suppress cutaneous radiation syndrome and stimulate hematopoiesis. The objective of this study was to test the ability of PB treatment to protect against acute gamma-radiation-induced lethality in the DBA/2 mouse model. A 30-day radiation lethality study was used to assess radioprotective capability of PB. Mechanisms were evaluated using western blots, flow cytometry, and the single-cell gel electrophoresis assay. Western blot studies showed that PB treatment acetylated histones in vivo. For radiation protection studies, prophylactic administration of PB (24 h preradiation; 1–50 mg/kg) provided radioprotection against gamma radiation (8–9.5 Gy) and PB demonstrated a DRF of 1.31 (P = 0.001; 95% confidence interval: 1.27, 1.36). When PB (10 mg/kg) was administered post-radiation (4 h), it also provided significant radioprotection at 8.0 Gy radiation (P = 0.022). PB treatment before radiation was associated with significant elevations in neutrophils and platelets following radiation. Results from single-cell gel electrophoresis of peripheral blood leukocytes demonstrated that PB treatment before radiation can attenuate DNA damage and inhibit radiation-induced apoptosis. These results indicate that an HDAC inhibitor like PB has potential as a radiation protector and that mechanisms of action include attenuation of DNA damage and inhibition of apoptosis.  相似文献   

6.
The effect of heavy ion radiation exposure of the spinal cord on the properties of the motoneurons innervating the slow soleus and fast plantaris muscles was investigated. A 15-, 20-, 40-, 50-, or 70-Gy dose of carbon ions (5 Gy/min) was applied to the 2nd to the 6th lumbar segments of the spinal cord in rats. After a 1-month recovery period, the number and cell body size of the irradiated motoneurons innervating the soleus and plantaris muscles did not differ from that of the non-irradiated controls, irrespective of the dose received. However, the oxidative enzyme activity of these motoneurons was decreased by heavy ion radiation at doses of 40, 50, and 70 Gy compared to that of the non-irradiated controls. This decrease in oxidative enzyme activity levels in the motoneurons returned to that of the non-irradiated controls after a 6-month recovery period. We conclude that heavy ion radiation at doses of 40–70 Gy reversibly decreases the oxidative enzyme activity of motoneurons in the spinal cord of rats.  相似文献   

7.
The effect of ferulic acid was studied on γ-radiation-induced relaxation of plasmid pBR322 DNA and induction of DNA strand breaks in peripheral blood leukocytes and bone marrow cells of mice exposed to whole body γ-radiation. Presence of 0.5 mM ferulic acid significantly inhibited the disappearance of supercoiled (ccc) plasmid pBR322 with a dose modifying factor (DMF) of 2.0. Intraperitoneal administration of different amounts (50, 75 and 100 mg/kg body weight) of ferulic acid 1 h prior to 4 Gy γ-radiation exposure showed dose-dependent decrease in the yield of DNA strands breaks in murine peripheral blood leukocytes and bone marrow cells as evidenced from comet assay. The dose-dependent protection was more pronounced in bone marrow cells than in the blood leukocytes. It was observed that there was a time-dependent disappearance of radiation induced strand breaks in blood leukocytes (as evidenced from comet parameters) following whole body radiation exposure commensuration with DNA repair. Administration of 50 mg/kg body weight of ferulic acid after whole body irradiation of mice resulted disappearance of DNA strand breaks at a faster rate compared to irradiated controls, suggesting enhanced DNA repair in ferulic acid treated animals. (Mol Cell Biochem xxx: 209–217, 2005)  相似文献   

8.
It is believed that any dose of ionizing radiation may damage cells and that the mutated cells could develop into cancer cells. Additionally, results of research performed over the past century on the effects of low doses of ionizing radiation on biological organisms show beneficial health effects, called hormesis. Much less is known about the cellular response to low doses of ionizing radiation, such as those typical for medical diagnostic procedures, normal occupational exposures or cosmic-ray exposures at flight altitudes. Extrapolating from the effects observed at higher doses to predict changes in cells after low-dose exposure is problematic. We examined the biological effects of low doses (0.01–0.3 Gy) of γ-radiation on the membrane characteristics of erythrocytes of albino rats and carried out osmotic fragility tests and Fourier transform infrared spectroscopy (FTIR). Our results indicate that the lowest three doses in the investigated radiation range, i.e., 0.01, 0.025 and 0.05 Gy, resulted in positive effects on the erythrocyte membranes, while a dose of 0.1 Gy appeared to represent the limiting threshold dose of those positive effects. Doses higher than 0.1 Gy were associated with the denaturation of erythrocyte proteins.  相似文献   

9.
In previous studies we showed a marked increase in secretion of inflammatory cytokines TNFα and interleukin (IL)-1β by mouse macrophages in response to different doses of ionizing radiation (IR). Here we show the stimulation of IL-12 and IL-18 secretion by mouse peritoneal macrophages after whole-body irradiation with exploration of the possible mechanisms and implications in cancer radiotherapy. Both low (0.075 Gy) and high (2 Gy) doses of IR were found to cause sustained stimulation of IL-12 and IL-18 secretion by mouse macrophages; this paralleled the activation of NF-κB as well as up-regulated expression of CD14 and TLR4–MD2 on the macrophage surface and MyD88 in the cytoplasm. The expression of CD14, TLR4–MD2 and MyD88 increased in a dose-dependent manner from radiation doses between 0.05 and 2 Gy. The secretion of IL-12 and IL-18 showed a dose-dependent increase from doses between 0.05 and 4 Gy. It is concluded that IR can stimulate the secretion of IL-12 and IL-18 presumably via activation of the Toll signaling pathway in macrophages. The potential harmful effect of repeated doses of radiation used in radiotherapy for certain cancers is discussed. Yu-Xing Shan and Shun-Zi Jin contributed equally to the present work.  相似文献   

10.
Osipov  A. N.  Ryabchenko  N. I.  Ivannik  B. P.  Ryabchenko  V. I. 《Biophysics》2011,56(5):936-940
The effect of combined action of cadmium chloride at a dose of 0.5 mg/kg of body weight and γ-radiation of 1 Gy on induction of DNA damage in thymocytes and the total number of cells in the thymus of mice was studied. We found that injection of CdCl2 0.5 h prior to irradiation decreased the number of single-strand DNA breaks and the number of alkali-labile sites in thymocytes 48 h after irradiation as compared to the γ-radiation effect only. This effect was associated with a strong decrease in the total number of thymocytes in this organ as compared to the action of cadmium ions and γ radiation separately. This masked the general genotoxic effect of combined treatment and created an illusion of a radioprotective effect of cadmium ions. Injection of cadmium chloride into mice 24 h prior to irradiation was followed by an additive increase in the number of the single-strand DNA breaks and the number of alkali-labile sites in thymocytes as compared to the respective controls such as the separate effects of cadmium ions and irradiation. We revealed a simultaneous decrease in the part of DNA tightly bound to proteins, i.e., DNA-protein cross-links as compared to the effect of γ-radiation only. We did not observe any statistically significant changes in the total number of thymocytes as compared to the separate effects of cadmium ions and irradiation. Thus, our data show that exposure of murine thymocytes to combined action of cadmium ions and γ-radiation at the doses and with the methods of treatment used induced additive effects but not antagonistic effects or protection against radiation.  相似文献   

11.
Fluorometric analysis of DNA unwinding (FADU) – a sensitive technique for the detection of strand breaks in DNA – has been modified and used for the detailed investigation of repair kinetics of DNA-strand breaks arising under different conditions in Ehrlich ascites tumour (EAT) cells irradiated by γ-rays or ultraviolet (UV) radiation. The repair kinetics of DNA-strand breaks induced in EAT cells by γ-radiation was measured at radiation doses of 8, 20 and 50 Gy. We found complex repair curves in all cases, probably reflecting the combined processes of break rejoining and break generation during repair. In order to affect the above-mentioned processes, we have used different conditions of repair and different types of radiation. Lowering of the temperature of incubation and treating the cells by 5-fluoro-2′-deoxyuridine (FUdR) lead to complex changes of the repair curve with a reduced ``wave' pattern. In order to change the type of damage to DNA, we used UV radiation (254 nm, 10 and 20 J/m2). Detailed studies of the repair kinetics showed that the repair curve for 10 J/m2 had a second maximum within 70 min after irradiation. Received: 17 May 1995 / Accepted in revised form: 15 March 1996  相似文献   

12.
The aim of our study was to establish an efficient in vitro propagation protocol for Chinese narcissus (Narcissus tazetta var. chinensis) to obtain variants of this species using γ-radiation treatment and evaluate the effectiveness of this system for variant induction using amplification fragment length polymorphism (AFLP) and randomly amplified polymorphic DNA (RAPD) analysis. Various doses (5–100 Gy) of gamma rays were applied to investigate the effect of radiation on adventitious bud formation from bulb-scales and the survival rate of plantlets. It was demonstrated that the regeneration of Chinese narcissus was very sensitive to gamma radiation even at low doses. The survival and multiplication rate significantly decreased with an increase of radiation dose. The optimal irradiation dose for survival and mutation induction was approximately 10 Gy. The genetic variations among the regenerants derived from irradiated explants were evaluated by DNA fingerprinting using RAPD and AFLP markers which detected a variation frequency of 8.33% and 15.48% respectively. The high frequency of mutants detected by molecular markers indicated that treatment of in vitro cultures with γ-rays may be an effective way to improve narcissus cultivars.  相似文献   

13.
Phosphorylation of replacement histone H2AX occurs in megabase chromatin domains around DNA double-strand breaks (DSBs), and this modification called γ-H2AX can be used as an effective marker for DSBs repair and DNA damage response. Using Western blotting and immunohistochemistry techniques we have studied here the influence of exogenous nicotinamide adenine dinucleotide phosphate (NADP), which can potentially increase the level of intracellular NAD+, on the level of γ-H2AX formation in mouse heart cells after ionizing radiation (IR). We have found that injection of NADP in different doses immediately after IR causes an increased level of γ-H2AX in mouse heart cells 20 min after IR at the dose of 3 Gy compared to control mice after IR exposure. It indicates that there could be a relationship between intracellular NAD+ content and DNA damage response in vivo.  相似文献   

14.
The radioprotective effect of 5-aminosalicylic acid (5ASA) was investigated in mouse bone marrow. The present study was aimed at investigating the radioprotective effect of pre-irradiation treatment with 5ASA against a range of whole-body lethal (8-11 Gy) and sublethal (1-4 Gy) doses of gamma-radiation (RT) in adult Swiss albino mice. Protection against lethal irradiation was evaluated from 30-day mouse survival and against sublethal doses was assessed from chromosomal aberrations in the bone marrow 24 h after irradiation. An intraperitoneal injection of 5ASA at a dose of 25mg/kg body weight (b. wt.) 30 min before lethal RT increased survival, giving a dose modification factor (DMF) of 1.08. Injection of 5ASA (25 mg/kg b. wt.) 60 or 30 min before or within 15 min after 3 Gy whole body RT resulted in a significant decrease in the radiation-induced aberrant metaphases, at 24 h post-irradiation. Maximum effect was seen when the drug was administered 30 min before irradiation. 5ASA (25 mg/kg b. wt.) significantly reduced the number of aberrant metaphases and the different types of aberrations at all the radiation doses (1-4 Gy) tested, giving a DMFs of 1.43 for number of aberrant metaphases. 5ASA pretreatment also significantly enhanced the endogenous spleen colonies in mouse exposed to 11 Gy RT. Pretreatment with 5ASA, protected plasmid DNA (pGEM-7Zf) against breakage induced by RT and Fenton reactants. Using nanosecond pulse radiolysis technique, the bimolecular rate constant of the reaction of 5ASA with hydroxyl radical was found to be 6.7x10(9)M(-1)s(-1). The p53 and p21 protein levels of bone marrow and spleen were evaluated to identify the specific molecular mechanisms. Both p53 and p21 increased 24h after 6 Gy irradiation, while treatment with 5ASA inhibited this RT-induced increase. Therefore, the present data suggest that 5ASA pretreatment decreases death caused by RT-induced gastrointestinal and hemopoeitic syndromes. The proposed mechanism of radioprotection by 5ASA is through the inhibition of damage to DNA, lipids, and proteins; and prevention of RT-induced increased expression of p53 and p21.  相似文献   

15.
The immediate-early response gene 5 (IER5) was previously shown, using microarray analysis, to be upregulated by ionizing radiation. Here we further characterized the dose- and time-dependency of radiation-induced expression of IER5 at doses from 0.5 to 15 Gy by quantitative real-time PCR analyses in HeLa cells and human lymphoblastoid AHH-1 cells. A radiation-induced increase in the IER5 mRNA level was evident 2 h after irradiation with 2 Gy in both cell lines. In AHH-1 cells the expression reached a peak at 4 h and then quickly returned to the control level, while in HeLa cells the expression only remained increased for a short period of time at around 2 h after irradiation before returning to the control. After high-dose irradiation (10 Gy), the induction of the IER5 expression was lower and delayed in AHH-1 cells as compared with 2-Gy irradiated cells. In HeLa cells, at this dose, two peaks of increased expression were observed 2 h and 12–24 h post-irradiation, respectively. RNA interference technology was employed to silence the IER5 gene in HeLa cells. siRNA-mediated suppression of IER5 resulted in an increased proliferation of HeLa cells. Cell growth and survival analyses demonstrated that suppression of IER5 significantly increased the radioresistance of HeLa cells to radiation doses of up to 6 Gy, but barely affected the sensitivity of cells at 8 Gy. Moreover, suppression of IER5 potentiated radiation-induced arrest at the G2-M transition and led to an increase in the fraction of S phase cells. Taken together, we propose that the early radiation-induced expression of IER5 affects the radiosensitivity via disturbing radiation-induced cell cycle checkpoints.  相似文献   

16.
Green tea is rich in polyphenols, like catechins, which are thought to contribute to the health benefits of tea. The aim of this study was to evaluate the radioprotective effect of EGCG (epigallocatechin-3-gallate), a green tea catechin on γ-radiation induced cell damage. Under acellular condition of radiation exposure, pBR322 plasmid DNA was protected by EGCG in a concentration dependent manner. Treatment of murine splenocytes with EGCG 2h prior to radiation (3Gy), protected the cellular DNA against radiation-induced strand breaks. EGCG also inhibited γ-radiation induced cell death in splenocytes. EGCG pretreatment to the cells decreased the radiation induced lipid peroxidation and membrane damage. The levels of phase II enzymes, glutathione and lactate dehydrogenase were restored with EGCG treatment prior to radiation. Our results show that pretreatment with EGCG offers protection to pBR322 DNA under acellular condition and normal splenocytes under cellular condition, against γ-radiation induced damage and is better radioprotector in comparison to quercetin and vitamin C.  相似文献   

17.
Aqueous extract of Podophyllum hexandrum (RP-1), which has been reported to render more than 82% survival against whole body lethal (10 Gy) gamma-irradiation in mice, was further investigated for its immunomodulatory potential. In this study, no significant change could be scored in peritoneal macrophages survival up to 8th day after whole body irradiation. RP-1 treatment (200 mg/kg body weight, i.p.) alone or 2 h before whole body irradiation enhanced macrophage survival significantly (p < 0.05) as compared to irradiated control mice. In irradiated animals, there was significant (p < 0.01) reduction in splenocyte survival and proliferation as revealed by 3H-TdR method. RP-1 treatment (200 mg/kg) alone or 2 h before irradiation countered the decrease in survival of splenocytes and proliferation significantly (p < 0.05) as compared to irradiated control group. Whole body irradiation also significantly (p < 0.05) reduced the population of CD4+ and CD8+ T cells and bone marrow GM-CFU at 24 h and 72 h post-irradiation intervals, respectively, as compared to unirradiated control. RP-1 treatment 2 h before whole body irradiation countered the decrease in CD4+ and CD8+ T cells populations and CGM-CFU. Nitric oxide free radicals generation was enhanced significantly (p < 0.05) in the supernatant of peritoneal macrophage cultures exposed to 2 Gy gamma radiation ex vivo in comparison to unirradiated control, which was reduced by pre-irradiation (−2 h) administration of RP-1. Whole body irradiation (10 Gy) also reduced the serum titres of IL-3, IL-1 and various IgG isotypes observed at different post-irradiation time interval. RP-1 treatment alone or before whole body irradiation countered radiation induced decrease in the titre of IL-1, IL-3 and IgG’s in the serum of mice. These findings indicate immunostimulatory potential of RP-1.  相似文献   

18.
Our previous study showed that ferulic acid (FA) offered good radioprotection under in vitro and in vivo conditions to DNA and enhanced the DNA repair process in the peripheral blood leucocytes of mice in vivo. This study concerns radioprotection of normal versus tumor cells. Administration of FA (50 mg/kg body weight) to mice bearing fibrosarcoma tumor, 1 h prior to/ or immediately after radiation exposure (4 Gy) showed preferential radioprotection to normal cells i.e. peripheral blood leucocytes and bone marrow cells in comparison to tumor cells. This preferential protection under in vivo conditions could be attributed to poor vasculature in the tumor or peculiar characteristics of the tumor cells either to restrict its entry inside the cells or metabolize or inactivate the drug. To resolve these ex vivo study was carried out using bone marrow and tumor cells. It was found that under ex vivo condition also only bone marrow cells were protected by FA. Thus the studies revealed that FA showed preferential protection to normal cells under both in vivo and ex vivo conditions. (Mol Cell Biochem xxx: 1–10, 2005)  相似文献   

19.
The studies reported in this communication had two major objectives: first to validate the in-house developed SCGE-Pro: a software developed for automated image analysis and data processing for Comet assay using human peripheral blood leucocytes exposed to radiation doses, viz. 2, 4 and 8 Gy, which are known to produce DNA/chromosome damage using alkaline Comet assay. The second objective was to investigate the effect of gamma radiation on DNA damage in mouse peripheral blood leucocytes using identical doses and experimental conditions, e.g. lyses, electrophoretic conditions and duration of electrophoresis which are known to affect tail moment (TM) and tail length (TL) of comets. Human and mouse whole blood samples were irradiated with different doses of gamma rays, e.g. 2, 4 and 8 Gy at a dose rate of 0.668 Gy/min between 0 and 4°C in air. After lyses, cells were electrophorased under alkaline conditions at pH 13, washed and stained with propidium iodide. Images of the cells were acquired and analyzed using in-house developed imaging software, SCGE-Pro, for Comet assay. For each comet, total fluorescence, tail fluorescence and tail length were measured. Increase in TM and TL was considered as the criteria of DNA damage. Analysis of data revealed heterogeneity in the response of leucocytes to gamma ray induced DNA damage both in human as well as in mouse. A wide variation in TM and TL was observed in control and irradiated groups of all the three donors. Data were analyzed for statistical significance using one-way ANOVA. Though a small variation in basal level of TM and TL was observed amongst human and mouse controls, the differences were not statistically significant. A dose-dependent increase in TM (P<0.001) and TL (P<0.001) was obtained at all the radiation doses (2–8 Gy) both in human and mouse leucocytes. However, there was a difference in the nature of dose response curves for human and mouse leucocytes. In human leucocytes, a linear increase in TM and TL was observed up to the highest radiation dose of 8 Gy. However, in case of mouse leucocytes, a sharp increase in TM and TL was observed only up to 4 Gy, and there after saturation ensued. In human samples, the dose response of both TM and TL showed best fits with linear model (rTM=0.999 and rTL=0.999), where as in mouse, the best fit was obtained with Sigmoid (Boltzman) model. From the present data on leucocytes with increase in TM and TL as the criteria of DNA damage, it appears that mouse is relatively more sensitive to radiation damage than humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号