首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The water-soluble peridinin-chlorophyll a-proteins (PCPs) are one of the major light harvesting complexes in photosynthetic dinoflagellates. PCP contains the carotenoid peridinin as its primary pigment. In this study, we identified and characterized the PCP protein and the PCP gene organization in Symbiodinium sp. CS-156. The protein molecular mass is 32.7kDa, revealing that the PCP is of the monomeric form. The intronless PCP genes are organized in tandem arrays. The PCP gene cassette is composed of 1095-bp coding regions and spacers in between. Despite the heterogeneity of PCP gene tandem repeats, we identified a single form of PCP, the sequence of which exactly matches the deduced sequence of PCP gene clone 7 (JQ395030) by LC-MS/MS analysis of tryptic digested PCP, revealing the mature PCP apoprotein is 312 amino acids in length. Pigment analysis showed a peridinin-to-Chl a ratio of 4. The peridinin-to-Chl a Q(y) energy transfer efficiency is 95% in this complex.  相似文献   

2.
Phencyclidine   总被引:4,自引:0,他引:4  
Phenycyclidine (PCP) produces many profound effects in the central nervous system. PCP has numerous behavioral and neurochemical effects such as inhibiting the uptake and facilitating the release of dopamine, serotonin, and norepinephrine. PCP also interacts with sigma, mu opioid, muscarinic, and nicotinic receptors. However, the psychotomimetic effects induced by PCP are believed to be mediated by specific PCP receptors, where PCP binds with greater potency than sigma compounds. Electrophysiological, behavioral, and neuro-chemical evidence strongly suggests that at least some of the many PCP actions result from antagonism of excitatory amino acid-induced responses via PCP receptors. The recent isolation and partial characterization of the alpha and beta endopsychosins and the identification of other endogenous ligands for the PCP and sigma receptors, is another promising area of research in the elucidation of the physiological role of an endogenous PCP and sigma system.  相似文献   

3.
After chronic administration of Phencyclidine (PCP) to rats, a high test dose (15 mg/kg) of PCP produced increases in stereotypic and ataxic behaviors, and a lower test dose of PCP (5 mg/kg) produced decreases in these behaviors, compared to behavioral responses of control rats. Rearing behavior in rats chronically administered PCP was increased at all test doses of the drug. Rats treated chronically with 15 mg/kg PCP for 9 days showed marked increases in most of these behaviors, whereas, rats receiving 5 mg/kg PCP for 9 days showed less change in several stereotypic and ataxic behaviors. Rats receiving 10 mg/kg PCP on a once-weekly schedule also exhibited more rearing and ataxic behavioral responses after the 3rd or 4th weekly PCP injection. Chronic PCP rats did not show more stereotypic or ataxic behavior after administration of apomorphine or amphetamine than control rats. These results suggest that chronic administration of PCP augments sensitivity to the stereotypic inducing effects of high doses, and decreases sensitivity to low doses of PCP.  相似文献   

4.
Pentachlorophenol (PCP), a highly toxic anthropogenic pesticide, can be mineralized by Sphingobium chlorophenolicum, a gram-negative bacterium isolated from PCP-contaminated soil. However, degradation of PCP is slow and S. chlorophenolicum cannot tolerate high levels of PCP. We have used genome shuffling to improve the degradation of PCP by S. chlorophenolicum. We have obtained several strains that degrade PCP faster and tolerate higher levels of PCP than the wild-type strain. Several strains obtained after the third round of shuffling can grow on one-quarter-strength tryptic soy broth plates containing 6 to 8 mM PCP, while the original strain cannot grow in the presence of PCP at concentrations higher than 0.6 mM. Some of the mutants are able to completely degrade 3 mM PCP in one-quarter-strength tryptic soy broth, whereas no degradation can be achieved by the wild-type strain. Analysis of several improved strains suggests that the improved phenotypes are due to various combinations of mutations leading to an enhanced growth rate, constitutive expression of the PCP degradation genes, and enhanced resistance to the toxicity of PCP and its metabolites.  相似文献   

5.
A Flavobacterium sp. was grown in continuous culture limited for growth with ammonium, phosphate, sulfate, glucose, glucose + pentachlorophenol (PCP) (0.065 h -1), or PCP. Cells ere harvested, washed, and suspended to 3 x 10(7) cells ml (-1) in shake flasks containing a complete mineral salts medium without added carbon or supplemented with 50 mg of PCP ml(-1) or 50 mg of PCP ml(-1) + 100 mg of glucose ml(-1). The PCP concentration and the viable cell density were determined periodically. Cells that were grown under phosphate, glucose, or glucose + PCP limitation were more sensitive to PCP and took longer to degrade 50 mg of PCP ml(-1) than did cells that very were grown under ammonium, sulfate, or PCP limitation. Glucose stimulated viability and PCP degradation in all cases except when the cells were grown under carbon limitation with glucose and PCP added together as the carbon source. These results indicate that there is a relationship between nutrient limitation, phenotypic variation, and the sensitivity to and degradation of PCP by this organism.  相似文献   

6.
The effects of physical, chemical, and biological treatments on biodegradation of pentachlorophenol (PCP) were studied in a silt-loam soil contaminated with 175 mg PCP/kg and uniformly 14C-labelled PCP. Biodegradation of 14C-labelled PCP and technical-grade PCP were monitored over 210 days incubation. Mineralization of labelled PCP was significantly (p=0.05) influenced by soil treatments. Negligible biodegradation occurred in either the sterile control soil or the uninoculated control soil, with less than 1% of added 14C recovered as 14 CO2. Inoculation of unamended soil with a strain of Flavobacterium (ATCC 39723) known to degrade PCP increased biodegradation of PCP; approximately 60% of the [14C]PCP was recovered as 14CO2. Increased soil water content (60% versus 30% w/w) enhanced biodegradation (67% recovery of 14C as CO2), while increased chloride ion concentration and anoxic conditions were inhibitory (20 and 1% recoveries, respectively). Residual soil PCP concentrations were also influenced by various treatments. In the sterile control soil and noninoculated control, after 210 days incubation, concentrations of PCP were 143 and 1223 mg/kg, respectively, while the PCP concentration in the inoculated soil was 21 mg/kg. When soil organic matter was increased by adding finely ground red clover leaf and stem material, the residual PCP concentration was reduced to 6 mg/kg after 210 days. Increased soil water content resulted in a residual PCP concentration of 5 mg/kg. High-pressure liquid chromatography of soil extracts revealed no accumulation of partial PCP degradation products. The results indicated that biodegradation of PCP in soil was significantly influenced by various soil amendments.  相似文献   

7.
The simultaneous biodegradation of the nonionic surfactant Tween 20 (Tw20) and pentachlorophenol (PCP) by Sphingomonas chlorophenolica sp. Strain RA2 (RA2) was measured. As a sole substrate, Tw20 biodegradation was best described by the Contois kinetic model. During concurrent biodegradation of Tw20 and PCP, the biodegradation rates of Tw20 were not significantly affected by 50 or 100 mg/L PCP, but were significantly inhibited by 500 mg/L PCP. Decreases in cell yield in the presence of PCP suggest that PCP was acting as an uncoupler. Cultures were pre-grown on PCP or Tw20 before degradation of PCP to evaluate enzyme induction effects, and long lags before PCP biodegradation after growth on Tw20 occurred. Although biokinetic models could accurately describe some of the data sets of RA2 growth and Tw20 and PCP degradation, finding a single set of kinetic parameters that predicted all dual substrate tests was not achieved. The complicating factors to modeling PCP and Tw20 interactions are described and may be more widely applicable to the biodegradation of toxic organic compounds in the presence of a biodegradable surfactant.  相似文献   

8.
The first step in the pentachlorophenol (PCP) degradation pathway in Sphingobium chlorophenolicum has been believed for more than a decade to be conversion of PCP to tetrachlorohydroquinone. We show here that PCP is actually converted to tetrachlorobenzoquinone, which is subsequently reduced to tetrachlorohydroquinone by PcpD, a protein that had previously been suggested to be a PCP hydroxylase reductase. pcpD is immediately downstream of pcpB, the gene encoding PCP hydroxylase (PCP monooxygenase). Expression of PcpD is induced in the presence of PCP. A mutant strain lacking functional PcpD has an impaired ability to remove PCP from the medium. In contrast, the mutant strain removes tetrachlorophenol from the medium at the same rate as does the wild-type strain. These data suggest that PcpD catalyzes a step necessary for degradation of PCP, but not for degradation of tetrachlorophenol. Based upon the known mechanisms of flavin monooxygenases such as PCP hydroxylase, hydroxylation of PCP should produce tetrachlorobenzoquinone, while hydroxylation of tetrachlorophenol should produce tetrachlorohydroquinone. Thus, we proposed and verified experimentally that PcpD is a tetrachlorobenzoquinone reductase that catalyzes the NADPH-dependent reduction of tetrachlorobenzoquinone to tetrachlorohydroquinone.  相似文献   

9.
Pentachlorophenol (PCP), a highly toxic anthropogenic pesticide, can be mineralized by Sphingobium chlorophenolicum, a gram-negative bacterium isolated from PCP-contaminated soil. However, degradation of PCP is slow and S. chlorophenolicum cannot tolerate high levels of PCP. We have used genome shuffling to improve the degradation of PCP by S. chlorophenolicum. We have obtained several strains that degrade PCP faster and tolerate higher levels of PCP than the wild-type strain. Several strains obtained after the third round of shuffling can grow on one-quarter-strength tryptic soy broth plates containing 6 to 8 mM PCP, while the original strain cannot grow in the presence of PCP at concentrations higher than 0.6 mM. Some of the mutants are able to completely degrade 3 mM PCP in one-quarter-strength tryptic soy broth, whereas no degradation can be achieved by the wild-type strain. Analysis of several improved strains suggests that the improved phenotypes are due to various combinations of mutations leading to an enhanced growth rate, constitutive expression of the PCP degradation genes, and enhanced resistance to the toxicity of PCP and its metabolites.  相似文献   

10.
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).  相似文献   

11.
Anaerobically digested municipal sewage sludge which had been acclimated to monochlorophenol degradation for more than 2 years was shown to degrade pentachlorophenol (PCP). Di-, tri-, and tetrachlorophenols accumulated when PCP was added to the individual acclimated sludges. When the 2-chlorophenol- (2-CP), 3-CP-, and 4-CP-acclimated sludges were mixed in equal volumes, PCP was completely dechlorinated. The same results were obtained in sludge acclimated to the three monochlorophenol isomers simultaneously. With repeated PCP additions, 3,4,5,-trichlorophenol, 3,5-dichlorophenol, and 3-CP accumulated in less than stoichiometric amounts. All chlorinated compounds disappeared after PCP additions were stopped. All chlorinated compounds disappeared after PCP additions were stopped. Incubations with [14C]PCP resulted in 66% of the added 14C being mineralized to 14CO2 and 14CH4. Technical-grade PCP was found to be degraded initially at a rate very similar to that of reagent-grade PCP, but after repeated additions, the technical PCP was degraded more slowly. Pentabromophenol was also rapidly degraded by the mixture of acclimated sludges. These results clearly show the complete reductive dechlorination of PCP by the combined activities of three chlorophenol-degrading populations.  相似文献   

12.
Summary The degradation of pentachlorophenol (PCP) by a Flavobacterium sp. was investigated by inoculating induced cells into cultures containing PCP alone or PCP and glutamate as carbon sources. Using PCP as the sole carbon source, the degradation activity increased with PCP concentration. However, a lag phase was observed and this lag was more pronounced at higher PCP concentrations. Exposure of cells to higher PCP concentrations during induction did not reduce the lag. The presence of glutamate reduced the lag in PCP degradation. Such an elimination of the lag phase appears to be due to maintaining cell viability with the presence of glutamate. Offprint requests to: W.-S. Hu  相似文献   

13.
Free and agarose-encapsulated pentachlorophenol (PCP)-degrading Sphingomonas sp. isolates UG25 and UG30 were compared to Sphingomonas chlorophenolica ATCC 39723 with respect to the ability to degrade PCP. Pretreatment of the UG25 and UG30 strains with 50 microg of PCP per ml enabled the cells to subsequently degrade higher levels of this environmental pollutant. Similar treatment of ATCC 39723 cells had no effect on the level of PCP degraded by this strain. Phosphorus-31 nuclear magnetic resonance spectra of agarose-immobilized strains UG25 and UG30 grown in the absence of PCP showed that there was marked deenergization of the cells upon exposure to a nonlethal concentration of PCP (120 microg/ml). For example, no transmembrane pH gradient was observed, and the ATP levels were lower than the levels obtained in the absence of PCP. The transmembrane pH gradient and ATP levels were restored once the immobilized cells had almost completely degraded the PCP in the perfusion medium. PCP-pretreated cells, on the other hand, maintained their transmembrane pH gradient and ATP levels even in the presence of high levels of PCP. The ability of PCP-pretreated strain UG25 and UG30 cells to remain energized in the presence of PCP was shown to correlate with an altered membrane phospholipid profile; these cells had a higher concentration of cardiolipin than cells cultured in the absence of PCP. Strain ATCC 39723, which did not degrade higher levels of PCP after PCP pretreatment, did not show this response.  相似文献   

14.
E Topp  R L Crawford    R S Hanson 《Applied microbiology》1988,54(10):2452-2459
The influence of high concentrations of pentachlorophenol (PCP) and readily metabolizable carbon on the activity and viability of a PCP-degrading Flavobacterium sp. was examined in a mineral salts medium. Lags preceding PCP removal by glutamate-grown Flavobacterium cells were greatly attenuated by the addition of glutamate, aspartate, succinate, acetate, glucose, or cellobiose. The effect of these supplementary carbon sources on the apparent lag was not mediated entirely through the stimulation of growth since PCP metabolism accompanied the onset of growth. The specific activity of PCP-degrading cells in the absence of supplementary carbon was 1.51 x 10(-13) +/- 0.08 x 10(-13) g of PCP per cell per h and in the presence of supplementary carbon was 0.92 x 10(-13) +/- 0.09 x 10(-13) g of PCP per cell per h. Glutamate in combination with glucose or cellobiose partially repressed PCP metabolism. PCP removal by PCP-induced, glutamate-grown cells suspended in the presence of 4 g of sodium glutamate per liter was sensitive to shock loads of PCP, with a Ki of about 86.8 micrograms/ml. Subsequent removal rates, however, were more resistant to PCP. Optimal stimulation of PCP removal by sodium glutamate required 3.0 g/liter, about the same concentration as that which saturated growth in the absence of PCP. PCP removal rates decayed within minutes following the transfer of PCP-induced, glutamate-grown cells to media containing PCP without supplementary carbon, and increasing PCP concentrations accelerated the decay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).  相似文献   

16.
A Flavobacterium sp. was grown in continuous culture limited for growth with ammonium, phosphate, sulfate, glucose, glucose + pentachlorophenol (PCP) (0.065 h -1), or PCP. Cells ere harvested, washed, and suspended to 3 x 10(7) cells ml (-1) in shake flasks containing a complete mineral salts medium without added carbon or supplemented with 50 mg of PCP ml(-1) or 50 mg of PCP ml(-1) + 100 mg of glucose ml(-1). The PCP concentration and the viable cell density were determined periodically. Cells that were grown under phosphate, glucose, or glucose + PCP limitation were more sensitive to PCP and took longer to degrade 50 mg of PCP ml(-1) than did cells that very were grown under ammonium, sulfate, or PCP limitation. Glucose stimulated viability and PCP degradation in all cases except when the cells were grown under carbon limitation with glucose and PCP added together as the carbon source. These results indicate that there is a relationship between nutrient limitation, phenotypic variation, and the sensitivity to and degradation of PCP by this organism.  相似文献   

17.
The water-soluble peridinin–chlorophyll a-proteins (PCPs) are one of the major light harvesting complexes in photosynthetic dinoflagellates. PCP contains the carotenoid peridinin as its primary pigment. In this study, we identified and characterized the PCP protein and the PCP gene organization in Symbiodinium sp. CS-156. The protein molecular mass is 32.7 kDa, revealing that the PCP is of the monomeric form. The intronless PCP genes are organized in tandem arrays. The PCP gene cassette is composed of 1095-bp coding regions and spacers in between. Despite the heterogeneity of PCP gene tandem repeats, we identified a single form of PCP, the sequence of which exactly matches the deduced sequence of PCP gene clone 7 (JQ395030) by LC–MS/MS analysis of tryptic digested PCP, revealing the mature PCP apoprotein is 312 amino acids in length. Pigment analysis showed a peridinin-to-Chl a ratio of 4. The peridinin-to-Chl a Qy energy transfer efficiency is 95% in this complex.  相似文献   

18.
Adsorption of pentachlorophenol (PCP) on induced cells of Mycobacterium chlorophenolicum PCP-1 and its influence on enzyme induction and PCP degradation of this strain were studied. Compared to non-induced cells, induced degrading cells had a lower adsorption capacity (q(ads)), particularly at prolonged induction and low PCP concentration. Unlike the effects of pH and biomass concentration previously reported for non-induced cells, the variation of q(ads) of induced cells was associated with changes of both the capacity and intensity constants of the Freundlich equation which was used to describe PCP adsorption on M. chlorophenolicum PCP-1. This indicated changes of cell surface properties during enzyme induction and PCP degradation. The latter was shown in turn to be affected by several parameters such as PCP concentration, pH value and induction time. Interestingly, irrespective of the pH and PCP concentration, the specific PCP degradation rate (q(t)(PCP)) at a given induction time was found to be solely a function of q(ads), revealing that adsorption capacity is an inherent key parameter for enzyme induction and PCP degradation. Based on this knowledge, a kinetic model was developed for q(t)(PCP) which used only q(ads) and induction time as variables. The model considered inhibition of PCP on both enzyme induction and enzyme activity and described the experimental data at different PCP concentrations and pH values well. q(ads) also turned out to be a useful criterion for choosing optimum induction concentration of PCP. Irrespective of pH and biomass concentration, an initial adsorption capacity of 2-3 micromol PCP/g cells was found to be optimum for enzyme induction in M. chlorophenolicum PCP-1.  相似文献   

19.
The acute administration of phencyclidine (PCP) causes hypothermia in the rat. Metaphit (1-[1-(3-isothiocyanatophenyl)cyclohexyl]-piperidine) is a derivative of PCP that has been shown to irreversibly acylate PCP receptors in vitro and in vivo and can antagonize the behavioral and electrophysiological effects of PCP in the rat. The purpose of the present study was to determine whether pretreatment with metaphit can block the hypothermic effects of PCP in the rat. Metaphit or PCP (1.0 mumol/rat) were injected into the lateral ventricles of rats, and 24 hr later the subjects were challenged with PCP (20.0 mg/kg s.c.). Pretreatment with metaphit blocked PCP-induced hypothermia; however, pretreatment with PCP did not affect the subsequent hypothermic response to PCP. These results indicate that the antagonism of PCP-induced hypothermia by metaphit was a specific effect and not due to PCP receptor desensitization.  相似文献   

20.
中枢苯环立啶受体介导的心血管效应   总被引:2,自引:1,他引:1  
有关中枢苯环立啶(PCP)受体的心血管效应,尚未见报道,本文采用大鼠侧脑室注射(icv)、脊髓蛛网膜下腔注射(ith)和皮下注射(sc)PCP受体的激动剂或拮抗剂,观察其对血压、心率和呼吸的影响,以了解脑和脊髓PCP受体的心血管效应,结果表明,icv250nmolPCP产生强烈的降压和快速持久的心率减慢作用。ithPCP立即产生强烈的降压和心率减慢作用。并呈量效关系。ithPCP受体篁 异性拮抗剂右吗喃15nmol,可拮抗PCP(150nmol)所产生的降奔驰主和心率减慢作用,ithPCP受体特异性拮抗剂右吗喃15nmol,可拮抗PCP(150nmol)所产生的降压和心率减慢作用,ithPCP受体激动剂TCP250nmol,立即产生强烈的降压和心率减慢作用。scPCP10ng/kg则产生升压作用,对心率没有影响,上述结果表明,中枢PCP受体具有心血管抑制效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号