首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Human INSM1 containing five C‐terminal C2H2‐type zinc fingers (ZFs), is a key regulator of neuroendocrine development. Previous research reported that full‐length INSM1 containing all five ZFs recognized a consensus DNA sequence. Structure elucidation of human INSM1 ZFs is currently insufficient to understand the DNA binding mechanism. Herein, we present the solution NMR structure of ZF4‐5, in which the two ZFs adopt a head‐to‐tail arrangement and each ZF features a canonical ββα fold. NMR titrations and isothermal titration calorimetry experiments showed that ZF4‐5 binds weakly to the consensus DNA sequence. Proteins 2017; 85:957–962. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
There are over 10,000 C2H2-type zinc finger (ZF) domains distributed among more than 1,000 ZF proteins in the human genome. These domains are frequently observed to be involved in sequence-specific DNA binding, and uncharacterized domains are typically assumed to facilitate DNA interactions. However, some ZFs also facilitate binding to proteins or RNA. Over 100 Cys2-His2 (C2H2) ZF-protein interactions have been described. We initially attempted a bioinformatics analysis to identify sequence features that would predict a DNA- or protein-binding function. These efforts were complicated by several issues, including uncertainties about the full functional capabilities of the ZFs. We therefore applied an unbiased approach to directly examine the potential for ZFs to facilitate DNA or protein interactions. The human OLF-1/EBF associated zinc finger (OAZ) protein was used as a model. The human O/E-1-associated zinc finger protein (hOAZ) contains 30 ZFs in 6 clusters, some of which have been previously indicated in DNA or protein interactions. DNA binding was assessed using a target site selection (CAST) assay, and protein binding was assessed using a yeast two-hybrid assay. We observed that clusters known to bind DNA could facilitate specific protein interactions, but clusters known to bind protein did not facilitate specific DNA interactions. Our primary conclusion is that DNA binding is a more restricted function of ZFs, and that their potential for mediating protein interactions is likely greater. These results suggest that the role of C2H2 ZF domains in protein interactions has probably been underestimated. The implication of these findings for the prediction of ZF function is discussed.  相似文献   

4.
5.
6.
7.
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein–protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.  相似文献   

8.
9.
10.
11.
Most mitochondrial mRNAs in trypanosomes undergo uridine insertion/deletion editing that is catalyzed by ∼20S editosomes. The editosome component KREPA3 is essential for editosome structural integrity and its two zinc finger (ZF) motifs are essential for editing in vivo but not in vitro. KREPA3 function was further explored by examining the consequence of mutation of its N- and C- terminal ZFs (ZF1 and ZF2, respectively). Exclusively expressed myc-tagged KREPA3 with ZF2 mutation resulted in lower KREPA3 abundance and a relative increase in KREPA2 and KREL1 proteins. Detailed analysis of edited RNA products revealed the accumulation of partially edited mRNAs with less insertion editing compared to the partially edited mRNAs found in the cells with wild type KREPA3 expression. Mutation of ZF1 in TAP-tagged KREPA3 also resulted in accumulation of partially edited mRNAs that were shorter and only edited in the 3′-terminal editing region. Mutation of both ZFs essentially eliminated partially edited mRNA. The mutations did not affect gRNA abundance. These data indicate that both ZFs are essential for the progression of editing and perhaps its accuracy, which suggests that KREPA3 plays roles in the editing process via its ZFs interaction with editosome proteins and/or RNA substrates.  相似文献   

12.
The Wilms’ tumour suppressor protein (WT1) plays a multifaceted role in human cancer processes. Mutations on its DNA recognition domain could lead to Denys–Drash syndrome, and alternate splicing results in insertion of the tripeptide Lys–Thr–Ser (KTS) between the third and fourth zinc fingers (ZFs), leading to changes in the DNA-binding function. However, detailed recognition mechanisms of the WT1–DNA complex have not been explored. To clarify the mutational effects upon WT1 towards DNA binding at the atomic level, molecular dynamics simulations and the molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) method were employed. The simulation results indicate that mutations in ZF domains (E427Q and Q369H) may weaken the binding affinity, and the statistical analyses of the hydrogen bonds and hydrophobic interactions show that eight residues (Lys351, Arg366, Arg375, Arg376, Lys399, Arg403, Arg424 and Arg430) have a significant influence on recognition and binding to DNA. Insertion of the tripeptide KTS could form an immobilized hydrogen-bonding network with Arg403, affecting the flexibility and angle of the linker between ZF3 and ZF4, thus influencing the recognition between the protein and the DNA triplet at its 5′ terminus. These results represent the first step towards a thorough characterization of the WT1 recognition mechanisms, providing a better understanding of the structure–function relationship of WT1 and its mutants.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号