首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An account is given of the flower of Echium plantagineum in south-eastern Australia, including stages and timing of flowering, behaviour of raindrops in the flower and aspects of floral microclimate. The concentration of nectar solutes varied with time and site, with means varying from 2 to 62% (as g sucrose/100 g solution). There was a significant negative correlation between nectar solute concentration and ambient relative humidity: the drier the air, the more concentrated the nectar. Rates of nectar secretion per flower varied with the bagging method, with long-term bagging reducing net secretion rates, possibly because of re-absorption. Rates varied with time, day and site, with a temporal pattern of change suggesting a link between rates of photosynthesis and secretion. Maximum nectar secretion rates in short-term bagging experiments were ca. 300 μg sugar/flower/hr (equivalent to > 2 mglflower/24 hr). Secretion rate was correlated with flower density. As flower density increased, secretion rate per flower decreased; rate of sugar production per unit area increased relatively more slowly than flower density. E. plantagineum could produce > 500 mg sugar/m2/day. Honeybees foraged on E. plantagineum only at ambient air temperatures above ca. 17°C unless irradiance exceeded ca. 750 W m-2. Foragers collected nectar or pollen alone, or both, with the type of visit significantly correlated with nectar solute concentration. Below 35% (as g sucrose/100 g solution) most bees took pollen only; above 40%, most took nectar. Mean standing crop of nectar was generally < 100 μg/flower when most bees were taking nectar, but could exceed 1000 μg/flower when bees were absent or foraging mainly for pollen. Honeybees did not always remove all nectar from flowers they probed. Reabsorption of residual nectar may augment the following day's secretion.  相似文献   

2.
Summary In Aconitum columbianum there are extreme interpopulation differences in rates of nectar secretion per flower. Since nectar sugar concentration varies little among populations, increased nectar secretion results in a greater mass of sugar per flower for pollinator attraction. These differences in the amount of reward offered per flower account at least in part for observed higher levels of pollinator activity in populations with high nectar production. Nectar production is correlated also with nectary depth, i.e., flowers in populations with deep nectaries have higher rates of nectar secretion than those with shallow nectaries. Nectary depth differences adapt populations to different pollinator-types. Populations with deeper nectaries are adapted to pollination by bumblebees with longer tongues and more specialized foraging behaviors. In conclusion, there are basic differences in pollination ecology among geographical races of a. columbianum, which are indicated by correlated interpopulution differences in (1) nectar production, (2) level of pollinator activity, (3) nectar depth, and (4) pollinator-type.  相似文献   

3.
The distribution of trait values in many populations is not homogenous but creates a mosaic of patches. This may lead to differences in selection on the patch level compared to selection on the population level. As an example we investigated the spatial distribution of nectar production and its effects on pollinator behaviour in a natural population of Echium vulgare. Nectar production per flower, number of flowers and total nectar production showed a hierarchy and spatial aggregation as expressed by Gini coefficients and significant Moran's I values. Plants in patches of high nectar production received significantly more pollinator visits and had a significant emanating effect on pollinator visits of neighbouring plants. The same was true for plants in patches with high number of flowers. To disentangle these effects a path analysis was applied, which suggested that the direct effect of nectar production per flower although present, seems to be small compared to the effect of the number of flowers. Nectar production per flower affected pollinator visits mainly indirectly by way of total nectar production, which includes the effect of number of flowers. Assuming a minor pollinator-mediated selection for number of flowers, pollinator-mediated selection for total nectar production equals that for nectar production per flower. If so, the observed spatial structure of nectar production and its emanating effect on pollinator behaviour is of importance for natural selection. Plants of low nectar production occurring close to patches of plants with high nectar production benefited from the enhanced pollinator service of their neighbours while saving costs of increased nectar production. Consequently, plants with low nectar production may have a selective advantage at patch level while plants with high nectar production may have a selective advantage at population level. Results presented stress the importance of small-scale patterns for ecological relationships and evolutionary change.  相似文献   

4.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

5.
Summary Pink-flowered tubular Penstemon roseus (Plantaginaceae), which has shifted partially to hummingbird pollination, blooms on high-elevation slopes in the mountains in Tlaxcala, Mexico. We studied the interactions between pollinator visitation rates to flowers, pollen removal and deposition, flower size, and nectar removal frequency on seed production in P. roseus. We combine observational and experimental studies in two contrasting natural populations. Our manual pollinations revealed that P. roseus is fully self-compatible. Autonomous self- and manual self-pollinated flowers matured as many seeds as when outcrossed, but outcrossing seems to become better than selfing as the flowering season progressed. Early in the season flowers that were bagged and hand-selfed, hand-outcrossed, or autonomously selfed, or unbagged and naturally pollinated had equal seed set in all four treatments. But later in the season, outcross pollen gave approximately twice as much seed set as the two self-treatments. Low levels of pollen receipt and pollen removal were consistent with the long time elapsed for a given plant to be visited by hummingbirds, which suggests pollen shortage in both sites. Despite differences in pollinator visitation rates to flowers, probability of flower visitation, removal and deposition of pollen, and nectar production rates between populations, we found that total nectar production had no effect on seed production at either site. The daily nectar secretion rate of 0.3–0.65 mg sugar per flower per 1–3 days was low relative to other hummingbird-adapted Penstemon species (typical range: 1.5–5 mg sugar per flower), and it might be intermediate between hummingbird- and bee-adapted Penstemon flowers. Our results support the hypothesis about a shift toward hummingbird pollination, and provide an example of a ‘despecialized’ Penstemon species, which attracts high-energy pollinators (hummingbirds) and profits from outcrossing, but retains bee-syndrome floral traits and low sugar production rates.  相似文献   

6.
This field study shows that the number of flowers visited per bee per plant (Anchusa officinalis) increases with the instantaneous nectar level at the plant. Observations during the season showed that a bee visits more flowers per plant of given nectar level, the lower the overall mean nectar level in the study area. These results agree with predictions from a model based on the ‘marginal value theorem’, but with assumptions and constraints adapted for nectar-foraging bees. It suggests that bumblebees assess the nectar level at a plant by sampling one or a few flowers, which is possible because within-plant nectar volumes are correlated. The bees compare encountered gains to an optimal plant switching threshold equal to the overall mean nectar level and leave an unrewarding plant as soon as possible, but continue to visit the flowers on a rewarding plant. However, the bees leave before having visited all flowers due to a searching constraint. The bees’ response to plant nectar levels results in systematic flower visitation, because visitation to recently depleted flowers is reduced, which reduces the variation of the inter-visit time per flower. Systematic flower visitation implies that the overall mean encountered gain per flower is higher than the overall mean standing crop, as predicted by a model of systematic foraging. However, the sampling and searching constraints on the bees’ response to plant nectar levels increase the variation of the inter-visit time per flower, and thereby limit the degree of systematic flower visitation and the effect on the mean encountered gain.  相似文献   

7.
B. S. LAW  M. CHIDEL 《Austral ecology》2008,33(8):999-1014
Nectar in tall forest canopies is a significant, but unquantified resource for Australian fauna. We investigated the impact of logging on nectar production in the canopy of spotted gum Corymbia maculata in southern New South Wales. In addition, we quantified the magnitude of canopy nectar production and how this varied with climate over 2 years. In 2005 flowers were bagged on large and small trees in replicate recently logged, regrowth and mature forest. Neither logging history nor tree size significantly affected overnight nectar production per flower, although there was a significant interaction. When nectar production was scaled up to the forest stand (incorporating flower and tree density) mature forest produced almost 10 times as much sugar per ha as recently logged forest, with regrowth being intermediate. Under current forest practices at the compartment scale, the difference between mature forest and recently logged forest was reduced to a factor of two times. One distinctive characteristic of C. maculata nectar in 2005 was its high sugar content (40–60%) compared with the concentrations measured in 2003 (~18%). Nectar was only slightly depleted in unbagged flowers in 2005 when flowering was unusually extensive. We estimated that, on average, mature spotted gum forest produced a vast resource of nectar overnight: 35 000 Kj ha?1. Flowers measured in 2003 provided a strong contrast with only occasional stands of trees flowering, much less sugar per flower early in the morning and unmeasurable quantities by mid‐morning, indicating that nectar was limiting. Measurements at sites in 2003 indicated that regrowth sites could be more productive than mature forest; however, few sites were measured. We suggest that management should focus mitigations on poor flowering years when the nectar resource is limiting. Models of nectar production collated over both years, using climate and site variables, indicated nectar volumes and sugar concentration respond differently to environmental conditions. Predicting the nectar resource, which is made up of both components, was most consistently related to recent conditions that were unfavourable to foliage production.  相似文献   

8.
This study describes nectar production patterns for Ipomopsis aggregata and discusses their potential adaptive and ecological significance. It also examines the influence of environmental and other factors on nectar production rate (NPR) and nectar sugar concentration. For I. aggregata there were no NPR differences with flower age. An hypothesis for the presence or absence of such differences is discussed. Ipomopsis aggregata has a relatively constant rate of nectar production during the day and production continues overnight but at a reduced rate. Newly opened flowers already have a sizeable accumulation of nectar. 24-hr nectar sugar production on overcast days was 62% of sunny day production. NPR values at the beginning of the flowering season were almost twice as great as those near the end but the sugar concentration did not change. Whether nectar was removed periodically (to simulate pollinator visits) or simply allowed to accumulate over 24 hr had no effect on total production. Nectar sugar concentration has a characteristic diurnal pattern: highest in the afternoon and lowest in the early morning, probably in response to diurnal changes in relative humidity. Sugar concentration was also lower on overcast days. These changes are not due to evaporative losses from the open end of the flower. However, evaporation did occur in flowers which had been punctured at the base of the corolla by nectar robbing bees. In general, the results of this study suggest caution in characterizing the NPR or sugar concentration of a species by making measurements at one point in time under one set of environmental conditions.  相似文献   

9.
Little is known about the reproductive biology of the Crassulaceae. We studied a population of Echeveria gibbiflora in the Pedregal de San Angel ecological preserve in Mexico City, Mexico. Each flower is open and producing nectar 7 to 8 days. On the days of maximum nectar production (flowers 4–6 days old) an average of 14.5 μl accumulates in a flower per day. The maximum rate of nectar production is between 0700 and 0900 hours. The average sugar concentration in the nectar is 43.7%. In a given flower, pollen is exposed and the stigmas are receptive at the same time. The average natural fruit-set and seed-set are 56.6% and 35.5%, respectively. The pollen-ovule ratio is 124, and the plants are fully self-compatible. The flowers are pollinated by only one species of hummingbird (Cynanthus latirostris) and are never visited by insects. Pollen movement is very limited (mean of pollinator flight distances = 0.72 m, mean distance fluorescent dyes = 0.92 m). Seed dispersion is by gravity and wind, and also is very limited (an average of 1.07 m). The total genetic neighborhood area is 15 m2 to 17 m2, producing a neighborhood effective population size (Nb) of 5.01 to 39.7 individuals. This is a very small Nb, indicating that genetic drift may be a dominant force in the evolution of this species.  相似文献   

10.
Summary Wasps (Dolichovespula and Vespula spp.) worked predominantly upwards when foraging for nectar on inflorescences of the protogynous Scrophularia aquatica, in which the standing crop of nectar sugar per flower showed no clear pattern of vertical distribution up an inflorescence. Bumblebees taking nectar (Bombus hortorum visiting legally, and certain individuals of B. terrestris which positioned themselves head-upwards while taking nectar through holes bitten in the corolla) worked predominantly upwards on the racemose inflorescences of Linaria vulgaris, although the standing crop of nectar sugar per open flower increased up the raceme. Individuals of B. terrestris which robbed Linaria flowers in a head-down position worked predominantly downwards on inflorescences. The upward or downward directionality of intra-inflorescence movements by foraging insects may depend in part on the position these adopt during their flower visits.  相似文献   

11.
High Performance Liquid Chromatography (HPLC) was used to determine specific sugar ratios (fructose, glucose and sucrose) in nectars of nine families of flowering plants. All nectars contained all three sugars with the exception of that of Asclepias. Asclepias nectar was nearly a pure sucrose solution. Sucrose/hexose ratio was correlated with flower morphology, with tubular flowers having more sucrose and open flowers having more hexose. Open flowers contained nectar whose concentration was more affected by relative humidity than tubular flowers. Available nectar in unbagged flowers was found in volumes of 0.1 to 5 μl (17.5 to 68.2% sugar). Total sugar available per blossom amounted to 0.07 to 3.54 mg. We note that care must be taken in converting % concentration to mg sugar. Energetic yield was not as variable as the other measures and ranged from 0.72 to 3.58 cal/μl. Total daily nectar production was measured in five families and 24-hr sugar production varied from 0.64 to 5.52 mg per flower. Insect nectar feeders frequently searched many blossoms with little or no reward, but were rewarded sufficiently at rare “lucky hit” blossoms which contained relatively large nectar rewards. Insect pollinators did not seek nectars of specific sucrose-hexose ratios, but instead took nectar where caloric reward and accessibility made it most profitable.  相似文献   

12.
The genusScrophularia in the Iberian Peninsula and Balearic Islands comprises two sections,Scrophularia andCanina G. Don. Analyses were carried out on flower production, flower duration and their sexual phases, pollen and nectar production together with observations on their pollinators. Nectar production is correlated with corolla size and pollen production with anther size. The taxa of sect.Scrophularia show greater nectar and pollen production than those of sect.Canina. Also, those of the first section produce more ovules per ovary than those of the second group, production being correlated with the ovary size.Some observations on floral and reproductive biology in some species ofScrophularia from the Iberian Peninsula and the Balearic Islands. I.  相似文献   

13.
Oilseed rape (OSR; Brassica napus L.) is a major crop in temperate regions and provides an important source of nutrition to many of the yield‐enhancing insect flower visitors that consume floral nectar. The manipulation of mechanisms that control various crop plant traits for the benefit of pollinators has been suggested in the bid to increase food security, but little is known about inherent floral trait expression in contemporary OSR varieties or the breeding systems used in OSR breeding programmes. We studied a range of floral traits in glasshouse‐grown, certified conventional varieties of winter OSR to test for variation among and within breeding systems. We measured 24‐h nectar secretion rate, amount, concentration and ratio of nectar sugars per flower, and sizes and number of flowers produced per plant from 24 varieties of OSR representing open‐pollinated (OP), genic male sterility (GMS) hybrid and cytoplasmic male sterility (CMS) hybrid breeding systems. Sugar concentration was consistent among and within the breeding systems; however, GMS hybrids produced more nectar and more sugar per flower than CMS hybrid or OP varieties. With the exception of ratio of fructose/glucose in OP varieties, we found that nectar traits were consistent within all the breeding systems. When scaled, GMS hybrids produced 1.73 times more nectar resource per plant than OP varieties. Nectar production and amount of nectar sugar in OSR plants were independent of number and size of flowers. Our data show that floral traits of glasshouse‐grown OSR differed among breeding systems, suggesting that manipulation and enhancement of nectar rewards for insect flower visitors, including pollinators, could be included in future OSR breeding programmes.  相似文献   

14.
《Flora》2006,201(5):353-364
Nectar production and flower visitors of the night-flowering Saponaria officinalis L. (Caryophyllaceae) were studied in relation to the reproductive success. Nectar production was worthwhile for nocturnal flower visitors. Nectar standing crop was about 267 μg sugar per flower, and comparison of nectar offering of covered and freely exposed flowers revealed that main nectar secretion time is mainly during the night up to the morning hours. In both covered and freely exposed flowers nectar volumes decreased over the day. In covered flowers, nectar volume, sugar concentration, and sugar amount per flower increased up to the third day; in older flowers sugar secretion ceased. In 1996 Autographa gamma (Noctuidae) was the exclusive nocturnal flower visitor, but pollen transfer experiments proved that A. gamma (Noctuidae) is a very ineffective pollinator of S. officinalis. In 1999 up to 50% of the observed visitors were Sphingidae, which resulted in a significantly higher seed set. Fruit set was constantly high independent of pollinator availability. In the nectar manipulation experiments seed set was highest in non-emasculated flowers filled with unnaturally high concentrated sucrose solutions. Differences to seed set on stalks treated with a sucrose solution mimicking naturally concentrated nectar were significant. Lowest fruit and seed set were found on inflorescences with emasculated flowers filled with a sucrose solution mimicking naturally concentrated nectar.  相似文献   

15.
Effects of elevated CO2 on flowering phenology and nectar production were investigated in Trifolium pratense, Lotus corniculatus, Scabiosa columbaria, Centaurea jacea and Betonica officinalis, which are all important nectar plants for butterflies. In glasshouse experiments, juvenile plants were exposed to ambient (350 μl l−1) and elevated (660 μl l−1) CO2 concentrations for 60–80 days. Elevated CO2 significantly enhanced the development of flower buds in C. jacea. B. officinalis flowered earlier and L. corniculatus produced more flowers under elevated CO2. In contrast, the number of flowers decreased in T. pratense. The amount of nectar per flower was not affected by elevated CO2 in the tested legumes (T. pratense and L. corniculatus), but was significantly reduced (!) in the other forbs. Elevated CO2 did not significantly affect nectar sugar concentration and composition. However, S. columbaria and C. jacea produced significantly less total sugar under elevated CO2. The nectar amino acid concentration remained unaffected in all investigated plant species, whereas the total of amino acids produced per flower was reduced in all non-legumes. In addition, the amino acid composition changed significantly in all investigated species except for C. jacea. The observed effects are unexpected and are a potential threat to flower visitors such as most butterflies which have no alternative food resources to nectar. Changes in nectar production due to elevated CO2 could also have generally detrimental effects on the interactions of flowers and their pollinators. Received: 12 September 1996 / Accepted: 9 September 1997  相似文献   

16.
Jaborosa integrifolia exhibits stigma-height polymorphism. There are individuals with flowers where anthers and stigma are at the same height but the rule is variable herkogamy, the most common type (75%) being that with an exerted stigma. Self- and cross-tubes did not differ in their capability to reach the ovary (t = –0.67,P < 0.53); they had a high growth rate (6.95 ± 2.28 mm h–1). There is not autogamy but mostly self-incompatibility. Fruits from controlled cross-pollination showed the highest seed set and seed viability. The nectar sugar is characterized by a similar amount of glucose and fructose, and by the absence of sucrose. Although nectar secretion was continuous throughout the life of the flower, most nectar was secreted during the first 24 h after flower opening. Nectar production costs appear to be lower than in other species since nectar secretion is neither inhibited after a removal (i.e. a pollinator visit) nor reabsorbed as the flower ages. Sphingids visit the flowers mainly after midnight. They insert their proboscis down to the base of the corolla tube to reach the nectar. The upper limit to fruit production is set by pollinator visits. Fruits produced from open-pollinated flowers are often predated by numerous larvae (mainly lepidopteran ones). Considering that this species is mostly self-incompatible and pollination is limited, that each plant displays only a low number of flowers throughout the flowering season, and that there is a high rate of fruit predation, it is not surprising that fruits ofJ. integrifolia are so rare.  相似文献   

17.
  • Studies have indicated that florivory and nectar robbing may reduce reproductive success of host plants. However, whether and how these effects might interact when plants are simultaneously attacked by both florivores and nectar robbers still needs further investigation.
  • We used Iris bulleyana to detect the interactions among florivory, nectar robbing and pollination, and moreover, their effects on plant reproductive success. Field investigations and hand‐pollination treatments were conducted on two experimental plots from a natural population, in which Experimental plot was protected from florivores and Control plot was not manipulated.
  • The flower calyx was bitten by sawflies to consume the nectary, and three bumblebee species were pollinators. In addition, the short‐tongued pollinator, Bombus friseanus, was the only robber when there was a hole made by a sawfly. The bumblebee had significantly shortened flower handling time when robbing, as compared to legitimate visits. Pollinator visitation and seed production decreased significantly in damaged flowers. However, seed production per flower after supplementary hand‐pollination did not differ significantly between damaged and undamaged flowers. Compared to the Experimental plot, bumblebees visited fewer flowers per plant in a foraging bout in the Control plot.
  • The flowers damaged by florivory allowed Bfriseanus to shift to a nectar robber. Florivory and nectar robbing collectively decreased plant reproductive success by consuming nectar resources, which may reduce attractiveness to pollinators of the damaged flowers. However, the changes in pollinator behaviour might be beneficial to the plant by reducing the risk of geitonogamous mating.
  相似文献   

18.
Arjen Biere  Sonja Honders 《Oecologia》1996,107(3):307-320
It is often assumed that host specialization is promoted by trade-offs in the performance of parasites on different host species, but experimental evidence for such trade-offs is scant. We studied differences in performance among strains of the anther smut fungus Ustilago violacea from two closely related host plant species, Silene alba and S. dioica, on progeny of (1) the host species from which they originated, (2) the alternative host species, and (3) inter-specific hybrids. Significant intra-specific variation in the pathogen was found for both infection success on a range of host genotypes (virulence) and components of spore production per infected host (aggressiveness) (sensu Burdon 1987). Strains did not have overall higher virulence on conspecifics of their host of origin than on strains from the heterospecific host, but they did have a significantly (c. 3 times) higher spore production per infected male host. This finding suggests that host adaptation may have evolved with respect to aggressiveness rather than virulence. The higher aggressiveness of strains on conspecifics of their host of origin resulted both from higher spore production per infected flower (spores are produced in the anthers), and greater ability to stimulate flower production on infected hosts. The latter indicates the presence of adaptive intraspecific variation in the ability of host manipulation. As transmission of the fungus is mediated by insects that are both pollinators of the host and vectors of the disease, we also assessed the effect of strains on host floral traits. Infection resulted in a reduction of inflorescence height, flower size, and nectar production per flower. Strains did not differ in their effect on nectar production, but infection with strains from S. alba resulted in a stronger reduction of inflorescence height and petal size on both host species. Vectors may therefore in principle discriminate among hosts infected by different strains and affect their efficiency of transmission. Contrary to assumptions of recent hypotheses about the role of host hybrids in the evolution of parasites, hybrids were not generally more susceptible than parental hosts. It is therefore unlikely that the rate of evolution of the pathogen on the parental species is slowed down by selection for specialization on the hybrids.  相似文献   

19.
Graham H. Pyke 《Oecologia》1978,34(3):255-266
Summary It is hypothesized that the body size of a bumblebee will be that size which maximizes its average net rate of energy intake while collecting nectar. A mathematical model is developed with the result that the net rate of energy intake of a nectar-collecting bumblebee is expressed as a function of the body size of the bumblebee. From this model the body size which maximizes the net rate of energy intake (i.e., optimal body size) is found (as the solution of an implicit equation). In this situation the advantage of large size is that larger bumblebees fly faster and hence take less flight time than smaller bumblebees. The disadvantage of larger size is greater energetic costs.The parameters of the model are estimated using data obtained from the foraging behavior of bumblebees on monkshood (Aconitum columbianum). The optimal body size is then calculated for workers of Bombus appositus which obtained almost all their nectar from monkshood. The observed and expected (i.e., optimal) body size are found to be close and not significantly different.The model also predicts that, from the bumblebee's point of view, there should be a positive correlation between the size of the bumblebee and the average amount of nectar obtained per flower. Evidence of this correlation is presented and the possible significance of the correlation from the plant's point of view is discussed. A possible extension of the model to general relationships between predator body size, prey size and prey density is discussed.  相似文献   

20.
The contribution of a bee plant species to honey production depends on the plant’s nectar secretion quality and quantity, which is mainly governed by biotic and abiotic factors. The aim of the current study, was to investigate the nectar secretion dynamics and honey production potential of 14 major bee plant species of the target area. We examined the quantity and dynamics of nectar sugar per flower five times a day using a nectar sugar washing technique and direct measuring of nectar with calibrated capillary tubes. The average nectar sugar amount of the species varied from 0.41 mg/flower to 7.7 mg/flower (P < 0.0001). The honey sugar per flower was used to extrapolate the honey production potential per plant and per hectare of land. Accordingly the honey production potential of the species observed to vary from 14 kg/hectare in Otostegia fruticosa to 829 kg/hectare in Ziziphus spina-christi. The nectar secretion dynamics of the species generally showed an increasing trend early in the morning, peaking toward midday, followed by a decline but different species observed to have different peak nectar secretion times. Generally, the tree species secreted more nectar sugar/flower than the herbs. The nectar secretion amount of the species was positively correlated with the ambient temperature, indicating the adaptation of the species to hot climatic conditions. However, different species were observed to have a different optimum temperature for peak nectar secretion. Despite the limited rainfall and high temperature of the area, many plants were found to have good potential for honey production. The monetary value of honey per hectare of the studied honeybee plant species can be of equal or greater than the per-hectare monetary value of some cultivated crops that require numerous inputs. In addition, the information generated is believed to be useful in apiary site selection and to estimate the honey bee colony carrying capacity of an area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号