首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major changes consistent with the fingerprint of global warming have been reported for nearly every ecosystem on earth. Recently, studies have moved beyond correlation-based inference to demonstrate mechanistic links between warming and biological responses, particularly in regions experiencing rapid change. However, the assessment of climate change impacts and development of adaptation options that humans can undertake are at the earliest stages, particularly for marine systems. Here, we use trends in ocean temperature to characterize regions that can act as natural laboratories or focal points for early learning. These discrete marine ‘hotspots’, where ocean warming is fastest, were identified based on 50 years of historical sea surface temperature data. Persistence of these hotspots into the future was evaluated using global climate models. This analysis provides insights and a starting point for scientists aiming to identify key regions of concern with regard to ocean warming, and illustrates a potential approach for considering additional physical drivers of change such as ocean pH or oxygenation. We found that some hotspot regions were of particular concern due to other non-climate stressors. For instance, many of the marine hotspots occur where human dependence on marine resources is greatest, such as south-east Asia and western Africa, and are therefore of critical consideration in the context of food security. Intensive study and development of comprehensive inter-disciplinary networks based on the hotspot regions identified here will allow earliest testing of management and adaptation pathways, facilitating rapid global learning and implementation of adaptation options to cope with future change.  相似文献   

2.
Ocean warming ‘hotspots’ are regions characterized by above‐average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test‐beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal‐marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high‐resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2‐driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature‐defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas.  相似文献   

3.
This study examined critical impacts of climate change on Inuit diet and nutritional health in four Inuit communities in the Inuvialuit Settlement Region, Western Arctic, Canada. The first objective was to combine data from community observation studies and dietary interview studies to determine potential climate change impacts on nutritional quality. The second objective was to address the scale of data collection and/or availability to compare local versus regional trends, and identify implications for adaptation planning. Information was compiled from 5 reports (4 community reports and 1 synthesis report) of climate change observations, impacts and adaptations in 12 Inuit communities (2005–2006), and from a dietary report of food use from 18 Inuit communities (1997–2000). Changing access to, availability of, quality of, and ability to use traditional food resources has implications for quality of diet. Nutritional implications of lower traditional food use include likely reductions in iron, zinc, protein, vitamin D, and omega-3 fatty acids, among others. The vulnerability of each community to changing food security is differentially influenced by a range of factors, including current harvesting trends, levels of reliance on individual species, opportunities for access to other traditional food species, and exposure to climate change hazards. Understanding linkages between climate change and traditional food security provides a basis for strengthening adaptive capacity and determining effective adaptation options to respond to future change.  相似文献   

4.
Climate change is not being felt equally around the world. Regions where warming is most rapid will be among those to experience impacts first, will need to develop early responses to these impacts and can provide a guide for management elsewhere. We describe the research history in one such global marine hotspot—south-east Australia—where a number of contentions about the value of hotspots as natural laboratories have been supported, including (1) early reporting of changes (2) early documentation of impacts, and (3) earlier development and promotion of adaptation options. We illustrate a transition from single discipline impacts-focused research to an inter-disciplinary systems view of adaptation research. This transition occurred against a background of change in the political position around climate change and was facilitated by four preconditioning factors. These were: (1) early observations of rapid oceanic change that coincided with (2) biological change which together provided a focus for action, (3) the strong marine orientation and history of management in the region, and (4) the presence of well developed networks. Three case studies collectively show the critical role of inter-disciplinary engagement and stakeholder participation in supporting industry and government adaptation planning.  相似文献   

5.
Documented impacts of climate change on marine systems indicate widespread changes in many geographic regions and throughout all levels of the ocean’s food webs. Oceans provide the main source of animal protein for over a billion people, and contribute significantly to food security for billions more. Clearly, if we are to continue to derive these benefits, then the rate of adaptation in our human systems needs to at least keep pace with the rate of ecological change for these benefits to continue. An Australia-wide program of research into marine biodiversity and fisheries explored the opportunities for policy and management to respond to a changing climate. The research program spanned all Australian estuarine-nearshore and marine environments—tropical, subtropical, and temperate—and focused on two key marine sectors: biodiversity conservation and fisheries (commercial, recreational, and aquaculture). Key findings from across this strategic and extensive research investment were the need to foster resilience through habitat repair and protection, improve resource allocation strategies, fine-tune fisheries management systems, and enhance whole of government approaches and policies. Building on these findings, from a climate adaptation perspective, we generated a checklist of thirteen elements encompassing all project findings to assess and steer progress towards improving marine policy and management. These elements are grouped in three broad areas: preconditioning; future proofing; and transformational changes and opportunities. Arising from these elements is a suite of priority strategies that provide guidance for marine managers, policy practitioners, and stakeholders as they prepare for a future under climate change. As the research program encompassed a wide range of habitats and ecosystems, spanned a latitudinal range of over 30°, and considered a diversity of management systems and approaches, many of these elements and strategies will be applicable in a global context.  相似文献   

6.
Climate change is a significant future driver of change in coastal social-ecological systems. Our knowledge of impacts, adaptation options, and possible outcomes for marine environments and coastal industries is expanding, but remains limited and uncertain. Alternative scenarios are a way to explore potential futures under a range of conditions. We developed four alternative future scenarios for the Great Barrier Reef and its fishing and tourism industries positing moderate and more extreme (2–3 °C above pre-industrial temperatures) warming for 2050 and contrasting ‘limited’ and ‘ideal’ ecological and social adaptation. We presented these scenarios to representatives of key stakeholder groups to assess the perceived viability of different social adaptation options to deliver desirable outcomes under varied contexts.  相似文献   

7.
Estuaries are among the most productive and economically important marine ecosystems at the land–ocean interface and contribute significantly to exchange of CO2 with the atmosphere. Estuarine microbial communities are major links in the biogeochemical C cycle and flow of C in food webs from primary producers to higher consumers. Considerable attention has been given to bacteria and autotrophic eukaryotes in estuarine ecosystems, but less research has been devoted to the role of heterotrophic eukaryotic microbes. Current research is reviewed here on the role of heterotrophic eukaryotic microbes in C biogeochemistry and ecology of estuaries, with particular attention to C budgets, trophodynamics, and the metabolic fate of C in microbial communities. Some attention is given to the importance of these processes in climate change and global warming, especially in relation to sources and sinks of atmospheric CO2, while also documenting the current paucity of research on the role of eukaryotic microbes that contribute to this larger question of C biogeochemistry and the environment. Some recommendations are made for future directions of research and opportunities of applying newer technologies and analytical approaches to a more refined analysis of the role of C in estuarine microbial community processes and the biogeochemical C cycle.  相似文献   

8.
The discipline of ecosystem oceanography provides a framework for assessing the role of mesoscale physical processes on the formation and occurrence of biological hotspots. We used shipboard surveys over nine years to investigate environmental determinants of seabird hotspots near the Antarctic Peninsula, a region experiencing rapid climate change and an expanding krill fishery. We hypothesize that seabird hotspots are structured by mesoscale ocean conditions that reflect differences in prey distribution within oceanic and coastal waters. We used generalized additive models to quantify functional relationships of seabird hotspots with krill biomass, and a suite of remotely sensed environmental variables, such as eddy kinetic energy. The spatial organization, changes in intensity, and distribution shifts of seabird hotspots indicate different environmental drivers within coastal and oceanic domains and reflect the seasonal variability of the ecosystem. Our results indicate at least eight mesoscale hotspot zones that represent ecologically important areas where significant krill and predator biomass may be concentrated. Our ecosystem assessment of seabird hotspots identified critical foraging habitat and provided reference points to benefit research on estimating their trophic impacts on Antarctic ecosystems and potential effects from the krill fishery. Our approach is generally applicable to other pelagic ecosystems that are structured by hydrographic fronts and eddies, and containing schooling forage species shared by multiple wide-ranging predators. Furthermore, identification of biological hotspots is useful for the designation of marine protected areas most critical to potentially endangered wildlife and fisheries resources.  相似文献   

9.
People draw upon multiple forms of environmental knowledge, from scientific to highly contextual local or traditional forms of knowledge, to interpret problems and gauge risks in complex socio-ecological systems. In collaboration with three remote Alaska Native communities, and using an interdisciplinary, participatory, and mixed methods research approach, we explored traditional ecological knowledge and scientific aspects of wild berries and the broader context of community health and environmental change. Combining site visits, key informant interviews, focus groups, survey questionnaires, portable field bioassays, and laboratory follow-up analyses, our research revealed the importance of local subsistence resources for community wellness. Multiple berry species were found to have powerful bioactive health properties for ameliorating metabolic syndrome as well as importance for community wellness. Communities differed in the degree to which they characterized berries as healthy foods and perceived environmental risks including climate change. Findings suggest the importance of incorporating locally available foods and socio-cultural traditions into community wellness programming. This article also discusses challenges and opportunities associated with transdisciplinary, participatory research with indigenous communities.  相似文献   

10.
In the Western Indian Ocean (WIO), local communities are increasingly assuming responsibility for inshore marine resources either on their own or through collaborative management arrangements with governments or non-state actors. In this paper, we trace the evolution and expansion of community management in the WIO and present the first ever inventory and assessment of the region’s locally managed marine areas (LMMAs). We compare the key attributes of these areas to those under government stewardship and assess their relative contributions to progress towards the Convention on Biodiversity (CBD) target of 10% of marine and coastal ecological regions to be effectively conserved by 2020. We also explore the legal frameworks that underpin locally managed marine initiatives in Kenya, Madagascar, Mozambique and Tanzania to assess the potential for future expansion. A principal finding is that whilst LMMAs protect more than 11,000 square kilometres of marine resource in the WIO, they are hampered by underdeveloped local and national legal structures and enforcement mechanisms. In our recommendations to improve local management, we suggest establishing a network of LMMA practitioners in the WIO region to share experiences and best practice.  相似文献   

11.
Fifteen years ago, the biohistory of Micronesia was still a blank slate relative to other regions of the Pacific. Since 1980, however, the Mariana Islands, one of the largest island chains in Micronesia, have been the focus of intensive archaeological investigation and human remains have been ubiquitous components of the archaeological assemblages recovered from the islands of Guam, Rota, Tinian, and Saipan. These investigations have provided us with a wealth of new data that will contribute substantially to our understanding of population adaptation to island ecosystems in this part of the Pacific. Much of the recent bioarchaeological research in the Marianas is the product of archaeological mitigation rather than directed research. Consequently, many of our research efforts have been articulated with the needs of cultural resource management (CRM) where research designs focus on several general problem areas: 1) subsistence adaptation with emphasis on the contribution of marine vs. terrestrial resources and the role of pelagic, or deep-ocean resources in the marine component of the diet; 2) regional (upland vs. coastal; interisland) and temporal variation in subsistence/settlement; and 3) geomorphologic variation in coastal sediments, particularly as influenced by storm events. Am J Phys Anthropol 104:271–290, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Undertaking climate vulnerability assessments (CVAs) on marine fisheries is instrumental to the identification of regions, species, and stakeholders at risk of impacts from climate change, and the development of effective and targeted responses for fisheries adaptation. In this global literature review, we addressed three important questions to characterize fisheries CVAs: (i) what are the available approaches to develop CVAs in various social–ecological contexts, (ii) are different geographic scales and regions adequately represented, and (iii) how do diverse knowledge systems contribute to current understanding of vulnerability? As part of these general research efforts, we identified and characterized an inventory of frameworks and indicators that encompass a wide range of foci on ecological and socioeconomic dimensions of climate vulnerability on fisheries. Our analysis highlighted a large gap between countries with top research inputs and the most urgent adaptation needs. More research and resources are needed in low-income tropical countries to ensure existing inequities are not exacerbated. We also identified an uneven research focus across spatial scales and cautioned a possible scale mismatch between assessment and management needs. Drawing on this information, we catalog (1) a suite of research directions that could improve the utility and applicability of CVAs, particularly the examination of barriers and enabling conditions that influence the uptake of CVA results into management responses at multiple levels, (2) the lessons that have been learned from applications in data-limited regions, particularly the use of proxy indicators and knowledge co-production to overcome the problem of data deficiency, and (3) opportunities for wider applications, for example diversifying the use of vulnerability indicators in broader monitoring and management schemes. This information is used to provide a set of recommendations that could advance meaningful CVA practices for fisheries management and promote effective translation of climate vulnerability into adaptation actions.  相似文献   

13.
Humans have drastically altered the abundance of animals in marine ecosystems via exploitation. Reduced abundance can destabilize food webs, leading to cascading indirect effects that dramatically reorganize community structure and shift ecosystem function. However, the additional implications of these top‐down changes for biogeochemical cycles via consumer‐mediated nutrient dynamics (CND) are often overlooked in marine systems, particularly in coastal areas. Here, we review research that underscores the importance of this bottom‐up control at local, regional, and global scales in coastal marine ecosystems, and the potential implications of anthropogenic change to fundamentally alter these processes. We focus attention on the two primary ways consumers affect nutrient dynamics, with emphasis on implications for the nutrient capacity of ecosystems: (1) the storage and retention of nutrients in biomass, and (2) the supply of nutrients via excretion and egestion. Nutrient storage in consumer biomass may be especially important in many marine ecosystems because consumers, as opposed to producers, often dominate organismal biomass. As for nutrient supply, we emphasize how consumers enhance primary production through both press and pulse dynamics. Looking forward, we explore the importance of CDN for improving theory (e.g., ecological stoichiometry, metabolic theory, and biodiversity–ecosystem function relationships), all in the context of global environmental change. Increasing research focus on CND will likely transform our perspectives on how consumers affect the functioning of marine ecosystems.  相似文献   

14.
Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat‐growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041–2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO2 emission scenario by 2081–2100 due to increasing losses in suitable wheat‐growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production.  相似文献   

15.
Previous studies have focused on changes in the geographical distribution of terrestrial biomes and species targeted by marine capture fisheries due to climate change impacts. Given mariculture's substantial contribution to global seafood production and its growing significance in recent decades, it is essential to evaluate the effects of climate change on mariculture and their socio‐economic consequences. Here, we projected climate change impacts on the marine aquaculture diversity for 85 of the currently most commonly farmed fish and invertebrate species in the world's coastal and/or open ocean areas. Results of ensemble projections from three Earth system models and three species distribution models show that climate change may lead to a substantial redistribution of mariculture species richness potential, with an average of 10%–40% decline in the number of species being potentially suitable to be farmed in tropical to subtropical regions. In contrast, mariculture species richness potential is projected to increase by about 40% at higher latitudes under the ‘no mitigation policy’ scenario (RCP 8.5) by the mid‐21st century. In Exclusive Economic Zones where mariculture is currently undertaken, we projected an average future decline of 1.3% and 5% in mariculture species richness potential under RCP 2.6 (‘strong mitigation’) and RCP 8.5 scenarios, respectively, by the 2050s relative to the 2000s. Our findings highlight the opportunities and challenges for climate adaptation in the mariculture sector through the redistribution of farmed species and expansion of mariculture locations. Our results can help inform adaptation planning and governance mechanisms to minimize local environmental impacts and potential conflicts with other marine and coastal sectors in the future.  相似文献   

16.
Processes that structure subarctic marine communities, particularly in glaciated regions, are not well understood. This understanding is needed as a baseline and to manage these communities in the face of future climate-driven changes. This study investigates two coastal regions of Southeast Alaska with the goals to (a) identify and compare patterns of subtidal community structure for macroalgal, fish, macroinvertebrate (>5?cm), and small epibenthic invertebrate (<5?cm) communities between inner coast and outer coast sites and (b) link patterns of community structure to habitat and environmental parameters. Species assemblage and benthic habitat data were used to compare species diversity and community composition at 6?m and 12?m depths at nine inner coast and nine outer coast sites. Multivariate analysis was applied to reduce environmental variables to major gradients, to resolve community structure, and to relate community structure to habitat and environmental variables. Increased salinity and decreased temperature at outer coast sites compared with inner coast sites were associated with community structure, with greater species diversity at outer coast sites at 6?m depth. Invertebrate community composition was associated with benthic habitat, including crust and coralline algae for macroinvertebrates, and algal cover and substrate for small epibenthic invertebrates. This research suggests that marine communities in glaciated regions are strongly influenced by freshwater input and that future climate-driven changes in freshwater input will likely result in marine community composition changes.  相似文献   

17.
Degraded coral reef ecosystems yield limited goods and services, which is expected to have significant socio-economic impacts on isolated tropical island communities with strong reliance on coral reefs. This study investigates socio-economic changes, specifically in fresh fish consumption and fishing activities, associated with environmental degradation at five fishing grounds (qoliqoli) in the Lau Islands (Fiji). Semi-structured interviews with fishers and senior household members revealed that the importance of fishing was low relative to other occupations, and consumption of fresh fish has declined over the last decade. Reduced fishing and choice of fresh fish is largely attributable to an increased need to derive income as well as new income-generating opportunities. A possible consequence of reduced reliance on marine resources was limited awareness of recent environmental degradation caused by climate-induced coral bleaching and outbreaks of coral-feeding crown-of-thorns starfish. Limited use and reduced awareness of the local marine environment in the short term may erode social memory and local ecological knowledge, reducing opportunities to fall back on marine resources. This may also compromise long-term economic and social stability. Conversely, low reliance on marine resources may confer greater flexibility to adapt to future ecological change in the marine environment. Importantly, changes in fish consumption and exploitation of marine resources were linked to socio-economic factors rather than a consequence of recent degradation of marine environments. Greater knowledge of the dynamics driving change in marine resource use is necessary to understand how societies respond to ecological and socio-economic change, and to identify opportunities for adaptive sustainable ecosystem management.  相似文献   

18.
Changing climate is forcing many terrestrial and marine species to extend their ranges poleward to stay within the bounds of their thermal tolerances. However, when such species enter higher latitude ecosystems, they engage in novel interactions with local species, such as altered predator–prey dynamics and competition for food. Here, we evaluate the trophic overlap between range‐extending and local fish species along the east coast of temperate Australia, a hotspot for ocean warming and species range extensions. Stable isotope ratios (δ15N and δ13C) of muscle tissue and stomach content analysis were used to quantify overlap of trophic niche space between vagrant tropical and local temperate fish communities along a 730 km (6°) latitudinal gradient. Our study shows that in recipient temperate ecosystems, sympatric tropical and temperate species do not overlap significantly in their diet—even though they forage on broadly similar prey groups—and are therefore unlikely to compete for trophic niche space. The tropical and temperate species we studied, which are commonly found in shallow‐water coastal environments, exhibited moderately broad niche breadths and local‐scale dietary plasticity, indicating trophic generalism. We posit that because these species are generalists, they can co‐exist under current climate change, facilitating the existence of novel community structures.  相似文献   

19.
20.
Ethnobiology, socio-economics and management of mangrove forests: A review   总被引:2,自引:10,他引:2  
There is growing research interest in the ethnobiology, socio-economics and management of mangrove forests. Coastal residents who use mangroves and their resources may have considerable botanical and ecological knowledgeable about these forests. A wide variety of forest products are harvested in mangroves, especially wood for fuel and construction, tannins and medicines. Although there are exceptions, mangrove forest products are typically harvested in a small-scale and selective manner, with harvesting efforts and impacts concentrated in stands that are closer to settlements and easiest to access (by land or by sea). Mangroves support diverse, local fisheries, and also provide critical nursery habitat and marine productivity which support wider commercial fisheries. These forests also provide valuable ecosystem services that benefit coastal communities, including coastal land stabilization and storm protection. The overlapping of marine and terrestrial resources in mangroves creates tenure ambiguities that complicate management and may induce conflict between competing interests. Mangroves have been cut and cleared extensively to make way for brackish water aquaculture and infrastructure development. More attention is now given to managing remaining forests sustainably and to restoring those degraded from past use. Recent advances in remotely sensed, geo-spatial monitoring provide opportunities for researchers and planners to better understand and improve the management of these unique forested wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号