首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study determined economic non-destructive methods to assess biofouling in point of use reverse osmosis (RO) membrane treatment systems. Three parallel household RO membrane units were operated under controlled feed water conditions to promote biofouling, inorganic fouling and a combination of both. Operational and biological parameters were monitored throughout the systems’ lifespan. Membrane autopsies assessed the degree and type of fouling. Statistical models determined statistically relevant parameters for fouling types that were validated with membrane autopsies. Permeate flow rates decreased differently with biofouling vs inorganic fouling. Large increases in permeate conductivity were noted in membranes suffering from biofouling and not in inorganically fouled membranes. The concentration of cell clumps from detached biofilm in the retentate increased in membranes experiencing biofouling and no increase was seen for inorganically fouled membranes. A combination of these methods could be used to conveniently assess the types of fouling experienced by RO systems.  相似文献   

2.
Chang Liu 《Biofouling》2020,36(1):14-31
Abstract

The impact of feed water quality on biofilm formation during membrane distillation (MD) was investigated in this study, particularly emphasizing the interrelationship between organics, salts, and microbes. Two types of typical natural surface waters in Nanjing, China, were chosen as feed solutions for long-term MD operation, including the Qinhuai River and Xuanwu Lake. The biofilms that developed under different feed water qualities exhibited distinct Foulant compositions and structures, causing different flux decline trends for the MD system. Accordingly, two typical patterns of biofilm formation were suggested for the MD operation of the two different kinds of surface waters in this study. Organics from a primal feed solution and dead bacteria were the key to the establishment of a biofilm on the membrane, and this needs to be effectively removed from the MD system through pre-treatment and process control strategies. Finally, a feasible strategy for MD biofouling control was suggested.  相似文献   

3.
膜生物反应器的研究进展   总被引:2,自引:0,他引:2  
膜生物反应器是近年来发展的废水处理新技术,具有活性污泥浓度高、污泥龄长、占地面积小、投资省的特点。利用膜生物反应器进行污水处理不仅可以大大节约水资源,还可以大大节约能源,节省设备和运行费用,已成为二十一世纪研究热点。膜生物反应器是通过高效膜分离技术与活性污泥相结合,增大污泥中的特效菌来加快生化反应速率,提高废水处理效果。目前处理对象已从生活污水扩展到高浓度的有机废水和难降解的工业废水。本文综述了膜生物反应器在废水中的应用研究情况,并分析比较了各种膜材质的特点、适用范围以及膜的污染因素和清洗方法,展望了膜生物反应器的应用前景及进一步研究方向。  相似文献   

4.
Membrane fouling by soluble microbial products (SMP) remains one of the limitations for widespread applications of membrane bioreactor (MBR) systems. Over the past two decades, the characteristics and behaviors of SMP have attracted much attention, and efforts have been dedicated to clarify their role in membrane fouling in MBRs. However, to date, there are only few reviews directly relating this area, and the objective of previous reviews is to concentrate on SMP and their implications in biological treatment systems and their effluents. This brief review relating only to SMP-caused membrane fouling evaluation at the fractional level (SMP key components, sub-fractions and hydrophilic and hydrophobic fractions) and at the overall level (SMP overall roles, characteristics and factors) is presented, which could greatly help researchers and engineers to better understand SMP actual contribution to membrane fouling and adopt effective measures to avoid SMP-caused fouling in MBRs.  相似文献   

5.
Virus protein U (Vpu) is an accessory membrane protein encoded by human immunodeficiency virus type 1 (HIV-1). Various NMR and CD studies have shown that the transmembrane domain of Vpu has a helical conformation and that the cytoplasmic domain adopts the helix-loop-helix-turn motif. This 3.5-ns molecular dynamics (MD) simulation of Vpu in a lipid/membrane environment has fully reproduced these structural characteristics. Membrane propensities of two amphipathic helices in the cytoplasmic domain are further compared here to understand better their complicated orientational behavior known from experiment. This study first reveals that the highly conserved loop region in the cytoplasmic domain can be closely associated with the membrane surface. It is known from the simulation that Vpu is associated with 34 lipids in this Langmuir monolayer. The lipids that are located between the Vpu transmembrane helix and the first helix in the cytoplasmic domain are pushed up by Vpu. These elevated lipids have increased P-N tilt angles for the head groups but unchanged acyl-chain tilt angles compared with lipids that do not interact with Vpu. This study verifies the significance of applying MD simulation in refining protein structure and revealing detailed protein-lipid interaction in membrane/water environment. Figure XZ view of a snapshot of Vpu/DLGPC/water system after 3.5 ns NP(N)gamma T MD simulation. Coloring scheme: Vpu, red; C, green; H, pink; N, blue; O, orange; P, magenta; water, light blue  相似文献   

6.
研究采用添加硅藻土、植物棉、活性炭等3种不同预处理手段来过滤铜绿微囊藻,并考察未预处理及预处理后的藻液过滤过程中的过滤特性、有机物分布及膜污染特性。结果表明, 3种预处理手段对过滤通量均有所提高并减缓膜污染。其中,硅藻土预处理提高平均过滤通量达915%,明显优于其他助滤手段。活性炭预处理能够有效吸附芳香族蛋白质类荧光污染物,显著降低污染膜的不可逆化学污染阻力。通过OCT及SEM分析可知未预处理的高藻水直接过滤造成的膜污染最严重,饼层结构的粗糙度最低并且厚度也最小,而硅藻土通过优化饼层结构以达到缓解膜污染的效果。最后基于XDLVO理论结果也进一步证实硅藻土预处理手段对改善膜污染效果最好。研究结果对未来蓝藻水华膜处理技术的预处理手段研发具有指导意义。  相似文献   

7.
This paper is designed to provide an overview of the main membrane-assisted processes that can be used for the removal of toxic inorganic anions from drinking water supplies. The emphasis has been placed on integrated process solutions, including the emerging issue of membrane bioreactors. An attempt is made to compare critically recently reported results, reveal the best existing membrane technologies and identify the most promising integrated membrane bio/processes currently being under investigation. Selected examples are discussed in each case with respect to their advantages and limitations compared to conventional methods for removal of anionic pollutants. The use of membranes is particularly attractive for separating ions between two liquid phases (purified and concentrated water streams) because many of the difficulties associated with precipitation, coagulation or adsorption and phase separation can be avoided. Therefore, membrane technologies are already successfully used on large-scale for removal of inorganic anions such as nitrate, fluoride, arsenic species, etc. The concentrated brine discharge and/or treatment, however, can be problematic in many cases. Membrane bioreactors allow for complete depollution but water quality, insufficiently stable process operation, and economical reasons still limit their wider application in drinking water treatment. The development of more efficient membranes, the design of cost-effective operating conditions, especially long-term operations without or with minimal membrane inorganic and/or biological fouling, and reduction of the specific energy consumption requirements are the major challenges.  相似文献   

8.
In this study, the effects of organic loading rate (OLR) and the addition of powdered activated carbon (PAC) on the performance and membrane fouling of MBR were conducted to treat real pharmaceutical process wastewater. Over 145 days of operation, the MBR system was operated at OLRs ranging from 1 to 2 kg COD m?3 day?1 without sludge wasting. The addition of PAC provided an improvement in the flux, despite an increase in the OLR:PAC ratio. The results demonstrated that the hybrid PAC-MBR system maintained a reduced amount of membrane fouling and steadily increased the removal performance of etodolac. PAC addition reduced the deposition of extracellular polymeric substance and organic matter on the membrane surface and resulted an increase in COD removal even at higher OLRs with low PAC addition. Membrane fouling mechanisms were investigated using combined adsorption fouling models. Modified fouling index values and normalized mass transfer coefficient values indicated that predominant fouling mechanism was cake adsorption.  相似文献   

9.
Membrane separations can be integrated into a biorefinery to reduce water and energy consumption. Unfortunately, current membrane materials suffer from severe fouling, which limits their applicability. Here, using analytical characterizations along with fouling models, we correlate membrane properties with performance metrics to provide a framework for optimal membrane selection during solid–liquid clarification of a biomass hydrolysate. Five membranes were evaluated: polyether sulfone, mixed cellulose esters, and three surface modified membranes with weak acid, strong acid, and weak base functionalities. Lignin was the primary component responsible for flux decline, due to physical entrapment and chemical adsorption. The best membrane performance (high and sustained flux, low fouling, and high separation factor) was correlated with higher surface roughness, lower hydrophobicity, neutral or positively charged zeta potential, and a larger number of smaller surface pores. These analyses provide valuable information for designing new materials for biorefining processes to reduce fouling and increase stability. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1246–1254, 2013  相似文献   

10.
Membrane crystallization is a newly developed crystallization technique that has proven to be superior in producing good crystal forms under operating conditions that are not appropriate to perform the crystallization process by other traditional techniques. In this work, static membrane crystallization was carried out on lysozyme, with hollow-fiber microporous hydrophobic membranes. Numerous precipitant and additive types and concentrations were employed in the crystallization processes in order to select the most appropriate precipitant and additive types and to find their corresponding concentration levels that can yield the best crystal forms. The crystallization processes were analyzed in two ways: firstly, by evaluation of the transmembrane fluxes obtained by using different precipitants and additives; secondly, by utilization of the images and results obtained from the micrography and IR spectra in comparisons and evaluations of the crystals formed under all kinds of conditions. Moreover, the size distributions of the crystals yielded under several typical crystallization conditions were analyzed, and turbidity and induction time periods obtained during typical crystallization experiments were also measured. Amongst the numerous precipitants and additives tested, the most appropriate precipitant type and additive were chosen and their concentrations were optimized. Good lysozyme crystals were obtained using a certain precipitant and additive. The obtained results from this work further support the advantages of utilizing the membrane crystallization technique for macromolecule crystallizations.  相似文献   

11.
Cross-flow membrane microfiltration was used under optimal conditions to recover met-growth hormone inclusion bodies (IBs) from Escherichia coli cell lysate by removal of the host-cell (bacterial) proteins (HCP) under minimal fouling conditions. This is the first step of a two-step process in which the goal was to isolate IBs at high yield from the HCP. These undesired soluble HCP were removed by passing them through the membrane while retaining the insolubles, including the aggregated IBs. Experiments were conducted at constant permeate flux with flat-sheet membranes of different pore sizes and chemistry, with feeds of varying pH and ionic strengths to determine the optimum combination for HCP removal. Diafiltration, the washing away of impurities with protein-free buffer, was then employed to ensure removal of the host cell proteins at the optimum conditions. About 90% removal of the HCP was obtained in about 5 diavolumes, maintaining high protein transmission and low membrane fouling.  相似文献   

12.
Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.  相似文献   

13.
In this study, bacteria isolated from a lake were characterised for their chlorine resistivity and the effects of chlorination on growth, mortality, protein expression and attachment propensity towards membranes. Biofouling and membrane performance were analysed. All isolated chlorine resistant strains, characterised by 16s rRNA gene sequencing, belonged to the genus Bacillus. Chlorination caused limited effects on bacterial growth and mortality. B. safensis and B. lechinoformis suffered the maximum effects due to chlorination. Live-to-dead ratios immediately after chlorination were above 1.3, with some exceptions. The membrane pure water flux recovery was highly strain dependent. Irreversible membrane fouling was observed with B. aquimaris. Membrane flux decreased substantially during ultrafiltration of water containing chlorine resistant bacteria.  相似文献   

14.
Hybrid biofilm membrane bioreactor (BF-MBR) system featuring new mechanisms for recovering the excess energy from air bubbling flow in the biofilm reactor and for controlling membrane biofouling was preliminarily investigated in this study. Alternative design of the biofilm reactor was developed to utilize the bubbling flow from the lower aerobic chamber to generate a mechanical mixing in the upper anoxic chamber in the vertical biofilm reactor. Suspended solid (SS) concentration in the system was hydrodynamically controlled to be lower than 70 mg/L. The ultraviolet (UV) inactivation unit was integrated with the membrane filtration tank to limit biological activities for biofoulant productions and to decelerate the unwanted biofilm formation in the permeate tube. Membrane relaxations at various operating conditions were studied for optimum membrane fouling reductions under low SS environment. Combinations of membrane relaxation and the UV inactivation significantly prolonged sustainable operation periods of the membrane filtration in the BF-MBR process.  相似文献   

15.
Interaction of electric fields with biological systems has begun to receive considerable attention for applications that include field-assisted drug delivery, medical interventions, and genetic engineering. External fields induce the strongest effects at membranes with electroporation being a common feature. Membrane transport in this context of poration is often based on continuum approaches utilizing macroscopic parameters such as the permittivity, diffusion coefficients, and mobilities. In such modeling, field dependences, local inhomogeneities, and microscopic details are usually ignored. Here, a molecular dynamics (MD) scheme is used for a more rigorous and physically realistic evaluation of such parameters for potential application to electroporative transport model development. A suitable membrane structure containing a nanopore derived from MD analysis is used as the initial geometric configuration. Both static and frequency dependent diffusion coefficients have been evaluated. Permittivities are also calculated and shown to be dramatically non-uniform in the vicinity of membranes under high external fields. A positive feedback mechanism leading to enhanced membrane fields is discussed.  相似文献   

16.
The aim of this study was to assess the effect of several operational variables on both biological and separation process performance in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater. The pilot plant is equipped with two industrial hollow-fibre ultrafiltration membrane modules (PURON? Koch Membrane Systems, 30 m2 of filtration surface each). It was operated under mesophilic conditions (at 33 °C), 70 days of SRT, and variable HRT ranging from 20 to 6h. The effects of the influent COD/SO?-S ratio (ranging from 2 to 12) and the MLTS concentration (ranging from 6 to 22 g L?1) were also analysed. The main performance results were about 87% of COD removal, effluent VFA below 20 mg L?1 and biogas methane concentrations over 55% v/v. Methane yield was strongly affected by the influent COD/SO?-S ratio. No irreversible fouling problems were detected, even for MLTS concentrations above 22 g L?1.  相似文献   

17.
Environmental deterioration together with the need for water reuse and the increasingly restrictive legislation of water quality standards have led to a demand for compact, efficient and less energy consuming technologies for wastewater treatment. Aerobic granular sludge and membrane bioreactors (MBRs) are two technologies with several advantages, such as small footprint, high-microbial density and activity, ability to operate at high organic- and nitrogen-loading rates, and tolerance to toxicity. However, they also have some disadvantages. The aerobic granular sludge process generally requires post-treatment in order to fulfill effluent standards and MBRs suffer from fouling of the membranes. Integrating the two technologies could be a way of combining the advantages and addressing the main problems associated with both processes. The use of membranes to separate the aerobic granules from the treated water would ensure high-quality effluents suitable for reuse. Moreover, the use of granular sludge in MBRs has been shown to reduce fouling. Several recent studies have shown that the aerobic granular membrane bioreactor (AGMBR) is a promising hybrid process with many attractive features. However, major challenges that have to be addressed include how to achieve granulation and maintain granular stability during continuous operation of reactors. This paper aims to review the current state of research on AGMBR technology while drawing attention to relevant findings and highlight current limitations.  相似文献   

18.
Trypsin crystallization by membrane-based techniques   总被引:4,自引:0,他引:4  
To grow protein crystals is not an easy task; moreover, if we need to grow protein crystals with controlled shape, size, and size distribution, depending on their application, the mission becomes even harder. Membrane crystallization has been recognized as an interesting tool for growing protein crystals with enhanced crystallization kinetics, both in static and in forced solution flow configuration, without detrimental effects on crystal quality. In the present work, we have studied the membrane crystallization process of benzamidine inhibited trypsin from bovine pancreas (BPT), with ammonium sulphate (dissolved in Tris-HCl buffer, 0.1 M, pH 8.5), as precipitant agent. We have demonstrated that, by using the membrane crystallization technique, BPT crystals can be obtained in 24-48 h, in static configuration, and in 4-7 days, in a forced solution flow system, depending on the experimental conditions. Furthermore, the kinetics of BPT crystallization have been modulated, to control the morphological characteristics of the crystals produced, by an accurate selection of the operative parameters involved in the process. The active membrane surface and the flow rate of extraction solvent in quiescent configuration, and the solution velocity in forced convection solution experiments, were the parameters investigated. In this respect, membrane crystallization techniques have been assessed as an interesting way for growing proteins, and more specifically enzyme crystals, with high control on the final properties of the crystalline material produced, with potential fundamental implication in the field of structural biology and biotechnology.  相似文献   

19.
Membrane proteins are core components of many essential cellular processes, and high-resolution structural data is therefore highly sought after. However, owing to the many bottlenecks associated with membrane protein crystallization, progress has been slow. One major problem is our inability to obtain sufficient quantities of membrane proteins for crystallization trials. Traditionally, membrane proteins have been isolated from natural sources, or for prokaryotic proteins, expressed by recombinant techniques. We are however a long way away from a streamlined overproduction of eukaryotic proteins. With this technical limitation in mind, we have probed the question as to how far prokaryotic homologues can take us towards a structural understanding of the eukaryotic/human membrane proteome(s).  相似文献   

20.
Membrane protein structural biology--how far can the bugs take us?   总被引:1,自引:0,他引:1  
Membrane proteins are core components of many essential cellular processes, and high-resolution structural data is therefore highly sought after. However, owing to the many bottlenecks associated with membrane protein crystallization, progress has been slow. One major problem is our inability to obtain sufficient quantities of membrane proteins for crystallization trials. Traditionally, membrane proteins have been isolated from natural sources, or for prokaryotic proteins, expressed by recombinant techniques. We are however a long way away from a streamlined overproduction of eukaryotic proteins. With this technical limitation in mind, we have probed the question as to how far prokaryotic homologues can take us towards a structural understanding of the eukaryotic/human membrane proteome(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号