首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using renewable microalgal biomass as active feedstocks for biofuels and bioproducts is explored to substitute petroleum-based fuels and chemicals. In the last few years, the importance of microalgae biomass has been realized as a renewable feedstock due to several positive attributes associated with it. Biorefinery via anaerobic digestion (AD) of microalgal biomass is a promising and sustainable method to produce value-added chemicals, edible products and biofuels. Microalgal biomass pretreatment is a significant process to enhance methane production by AD. Findings on the AD microbial community’s variety and organization can give novel in turn on digester steadiness and presentation. This review presents a vital study of the existing facts on the AD microbial community and AD production. Co-digestion of microalgal biomass with different co-substrates was used in AD to enhance biogas production, and the process was economically viable with improved biodegradability. Microcystins, which are produced by toxic cyanobacterial blooms, create a severe hazard to environmental health. Anaerobic biodegradation is an effective method to degrade the microcystins and convert into nontoxic products. However, for the cost-effective conversion of biomass to energy and other beneficial byproducts, additional highly developed research is still required for large-scale AD of microalgal biomass.  相似文献   

2.
The production of methane (CH4) via the anaerobic digestion of microalgae biomass residues from the biodiesel production process has the potential to meet some of the energy requirements of the primary biomass to fuel conversion process. This paper investigates the practical CH4 yields achievable from the anaerobic conversion of the microalgae residues (as well as codigestion with glycerol) after biodiesel production using both the conventional and in situ transesterification methods. Results demonstrate that the type of lipid extraction solvent utilized in the conventional transesterification process could inhibit subsequent CH4 production. On the basis of actual CH4 production, a recoverable energy of 8.7–10.5 MJ kg?1 of dry microalgae biomass residue was obtained using the lipid extracted and transesterified microalgae samples. On codigesting the microalgae residues with glycerol, a 4–7% increase in CH4 production was observed.  相似文献   

3.
The potential of algal biomass as a source of liquid and gaseous biofuels is a highly topical theme, The process operations for algal biofuel production can be grouped into three areas: growth, harvesting and energy extraction, with a wide range of combinations of unit operations that can form a microalgal biofuel production system, but as yet there is no successful economically viable commercial system producing biofuel. This suggests that there are major technical and engineering difficulties to be resolved before economic algal biofuel production can be achieved. This article briefly reviews the methods by which useful energy may be extracted from microalgae biomass: (a) direct combustion, (b) pyrolysis, (c) gasification, (d) liquefaction, (e) hydrogen production by biochemical processes in certain algae, (f) fuel cells, (g) fermentation to bioethanol, (h) trans-esterification to biodiesel, (i) anaerobic digestion.  相似文献   

4.
The potential of microalgae as a source of biofuels and as a technological solution for CO2 fixation is subject to intense academic and industrial research. In the perspective of setting up massive cultures, the management of large quantities of residual biomass and the high amounts of fertilizers must be considered. Anaerobic digestion is a key process that can solve this waste issue as well as the economical and energetic balance of such a promising technology. Indeed, the conversion of algal biomass after lipid extraction into methane is a process that can recover more energy than the energy from the cell lipids. Three main bottlenecks are identified to digest microalgae. First, the biodegradability of microalgae can be low depending on both the biochemical composition and the nature of the cell wall. Then, the high cellular protein content results in ammonia release which can lead to potential toxicity. Finally, the presence of sodium for marine species can also affect the digester performance. Physico-chemical pretreatment, co-digestion, or control of gross composition are strategies that can significantly and efficiently increase the conversion yield of the algal organic matter into methane. When the cell lipid content does not exceed 40%, anaerobic digestion of the whole biomass appears to be the optimal strategy on an energy balance basis, for the energetic recovery of cell biomass. Lastly, the ability of these CO2 consuming microalgae to purify biogas and concentrate methane is discussed.  相似文献   

5.
Concerns regarding the depletion of the world's reserves of oil and global climate change have promoted an intensification of research and development toward the production of biofuels and other alternative sources of energy during the last years. There is currently much interest in developing the technology for third-generation biofuels from microalgal biomass mainly because of its potential for high yields and reduced land use changes in comparison with biofuels derived from plant feedstocks. Regardless of the nature of the feedstock, the use of fertilizers, especially nitrogen, entails a potential economic and environmental drawback for the sustainability of biofuel production. In this work, we have studied the possibility of nitrogen biofertilization by diazotrophic bacteria applied to cultured microalgae as a promising feedstock for next-generation biofuels. We have obtained an Azotobacter vinelandii mutant strain that accumulates several times more ammonium in culture medium than wild-type cells. The ammonium excreted by the mutant cells is bioavailable to promote the growth of nondiazotrophic microalgae. Moreover, this synthetic symbiosis was able to produce an oil-rich microalgal biomass using both carbon and nitrogen from the air. This work provides a proof of concept that artificial symbiosis may be considered an alternative strategy for the low-N-intensive cultivation of microalgae for the sustainable production of next-generation biofuels and other bioproducts.  相似文献   

6.
The use of photosynthetic microalgae for nutrient removal and biofuel production has been widely discussed. Anaerobic digestion of waste microalgal biomass to produce biogas is a promising technology for bioenergy production. However, the methane yield from this anaerobic process was limited because of the hard cell wall of Chlorella vulgaris. The use of ultrasound has proven to be successful at improving the disintegration and anaerobic biodegradability of Chlorella vulgaris. Ultrasonic pretreatment in the range of 5–200 J ml−1 was applied to waste microalgal biomass, which was then used for batch digestion. Ultrasound techniques were successful and showed higher soluble COD at higher applied energy. During batch digestion, cell disintegration due to ultrasound increased in terms of specific biogas production and the degradation rate. Compared to the untreated sample, the specific biogas production was increased in the ultrasound-treated sample by 90% at an energy dose of 200 J ml−1. For the disintegrated samples, volatile solids reduction was also increased according to the energy input and degradation. These results indicate that the hydrolysis of microalgal cells is the rate-limiting step in the anaerobic digestion of microalgal biomass.  相似文献   

7.
Excess greenhouse gas emissions and the concomitant effect on global warming have become significant environmental, social and economic threats. In this context, the development of renewable, carbon-neutral and economically feasible biofuels is a driving force for innovation worldwide. A lot of effort has been put into developing biodiesel from microalgae. However, there are still a number of technological, market and policy barriers that are serious obstacles to the economic feasibility and competitiveness of such biofuels. Conversely, there are also a number of business opportunities if the production of such alternative biofuel becomes part of a larger integrated system following the Biorefinery strategy. In this case, other biofuels and chemical products of high added value are produced, contributing to an overall enhancement of the economic viability of the whole integrated system. Additionally, dual purpose microalgae-bacteria-based systems for treating wastewater and production of biofuels and chemical products significantly contribute to a substantial saving in the overall cost of microalgae biomass production. These types of systems could help to improve the competitiveness of biodiesel production from microalgae, according to some recent Life Cycle Analysis studies. Furthermore, they do not compete for fresh water resources for agricultural purposes and add value to treating the wastewater itself. This work reviews the most recent and relevant information about these types of dual purpose systems. Several aspects related to the treatment of municipal and animal wastewater with simultaneous recovery of microalgae with potential for biodiesel production are discussed. The use of pre-treated waste or anaerobic effluents from digested waste as nutrient additives for weak wastewater is reviewed. Isolation and screening of microalgae/cyanobacteria or their consortia from various wastewater streams, and studies related to population dynamics in mixed cultures, are highlighted as very relevant fields of research. The species selection may depend on various factors, such as the biomass and lipid productivity of each strain, the characteristics of the wastewater, the original habitat of the strain and the climatic conditions in the treatment plant, among others. Some alternative technologies aimed at harvesting biomass at a low cost, such as cell immobilization, biofilm formation, flocculation and bio-flocculation, are also reviewed. Finally, a Biorefinery design is presented that integrates the treatment of municipal wastewater with the recovery of oleaginous microalgae, together with the use of seawater supplemented with anaerobically digested piggery waste for cultivating Arthrospira (Spirulina) and producing biogas, biodiesel, hydrogen and other high added value products. Such strategies offer new opportunities for the cost-effective and competitive production of biofuels along with valuable non-fuel products.  相似文献   

8.
Algal biofuels     
The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.  相似文献   

9.
Waste-grown microalgae are a potentially important biomass for wastewater treatment. The lipid accumulated in microalgae could be utilized as feedstocks for biodiesel production. The algal residues, as major by-products derived from lipid extraction, mainly consist of carbohydrate and protein, making anaerobic digestion an efficient way to recover energy. The conversion of lipid-extracted algal residues into methane plays dual role in renewable energy production and sustainable development of microalgal biodiesel industry. Therefore, an anaerobic fermentation process for investigation of the methane production potential of algal residues was conducted in this paper. The effect of inoculum to substrate ratios (ISRs) on the methane production by anaerobic digestion of Chlorella sp. residue in a single stage was evaluated. The maximum methane yield of 195.6 ml CH4/g volatile solid (VS) was obtained at an ISR of 1:1. The stability and progress of the reaction from algal residues to methane were monitored by measuring the pH, volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), and methane volume. Based on the results of one-stage experiments, two-stage technology was proposed and was found to be more suitable for high organic load. The optimum conditions for acidogenesis and methanogenesis are indicated in this paper.  相似文献   

10.
The production of biofuels from microalgae requires efficient photobioreactors in order to meet the tight constraints of energy efficiency and economic profitability. Current cultivation systems are designed for high-value products rather than for mass production of cheap energy carriers. Future bioreactors will imply innovative solutions in terms of energy efficiency, light and gas transfer or attainable biomass concentration to lower the energy demand and cut down production costs. A new generation of highly developed reactor designs demonstrates the enormous potential of photobioreactors. However, a net energy production with microalgae remains challenging. Therefore, it is essential to review all aspects and production steps for optimization potential. This includes a custom process design according to production organism, desired product and production site. Moreover, the potential of microalgae to synthesize valuable products additionally to the energetic use can be integrated into a production concept as well as waste streams for carbon supply or temperature control.  相似文献   

11.
Biomass-derived volatile fatty acid platform for fuels and chemicals   总被引:1,自引:0,他引:1  
The typical biorefinery platforms are sugar, thermochemical (syngas), carbon-rich chains, and biogas platforms, each offering unique advantages and disadvantages. The sugar platform uses hexose and pentose sugars extracted or converted from plant body mass. The thermochemical (syngas) platform entails a chemical or biological conversion process using pyrolysis or gasification of plants to produce biofuels. The carbon-rich chains platform is used to produce biodiesel from long-chain fatty acids or glycerides. In the present work, we suggest a new platform using volatile fatty acids (VFAs) for the production of biofuels and biochemicals production. The VFAs are short-chain fatty acids composed mainly of acetate and butyrate in the anaerobic digestion (AD) process, which does not need sterilization, additional hydrolysis enzymes (cellulose or xylanase), or a high cost pretreatment step. VFAs are easily produced from almost all kinds of biomass with low lignin content (terrestrial, aquatic, and marine biomass) by the AD process. Considering that raw material alone constitutes 40∼80% of biofuel production costs, biofuels made from VFAs derived from waste organic biomass potentially offer significant economical advantage.  相似文献   

12.
ABSTRACT

Microalgae have enormous potential as feedstock for biofuel production compared with other sources, due to their high areal productivity, relatively low environmental impact, and low impact on food security. However, high production costs are the major limitation for commercialization of algal biofuels. Strategies to maximize biomass and lipid production are crucial for improving the economics of using microalgae for biofuels. Selection of suitable algal strains, preferably from indigenous habitats, and further improvement of those ‘platform strains’ using mutagenesis and genetic engineering approaches are desirable. Conventional approaches to improve biomass and lipid productivity of microalgae mainly involve manipulation of nutritional (e.g. nitrogen and phosphorus) and environmental (e.g. temperature, light and salinity) factors. Approaches such as the addition of phytohormones, genetic and metabolic engineering, and co-cultivation of microalgae with yeasts and bacteria are more recent strategies to enhance biomass and lipid productivity of microalgae. Improvement in culture systems and the use of a hybrid system (i.e. a combination of open ponds and photobioreactors) is another strategy to optimize algal biomass and lipid production. In addition, the use of low-cost substrates such as agri-industrial wastewater for the cultivation of microalgae will be a smart strategy to reduce production costs. Such systems not only generate high algal biomass and lipid productivity, but are also useful for bioremediation of wastewater and bioremoval of waste CO2. The aim of this review is to highlight the advances in the use of various strategies to enhance production of algal biomass and lipids for biofuel feedstock.  相似文献   

13.
14.
Algae biofuels: versatility for the future of bioenergy   总被引:1,自引:0,他引:1  
The world continues to increase its energy use, brought about by an expanding population and a desire for a greater standard of living. This energy use coupled with the realization of the impact of carbon dioxide on the climate, has led us to reanalyze the potential of plant-based biofuels. Of the potential sources of biofuels the most efficient producers of biomass are the photosynthetic microalgae and cyanobacteria. These versatile organisms can be used for the production of bioethanol, biodiesel, biohydrogen, and biogas. In fact, one of the most economic methods for algal biofuels production may be the combined biorefinery approach where multiple biofuels are produced from one biomass source.  相似文献   

15.
Life-cycle assessment of microalgae culture coupled to biogas production   总被引:1,自引:0,他引:1  
Due to resource depletion and climate change, lipid-based algal biofuel has been pointed out as an interesting alternative because of the high productivity of algae per hectare and per year and its ability to recycle CO2 from flue gas. Another option for taking advantage of the energy content of the microalgae is to directly carry out anaerobic digestion of raw algae in order to produce methane and recycle nutrients (N, P and K). In this study, a life-cycle assessment (LCA) of biogas production from the microalgae Chlorella vulgaris is performed and the results are compared to algal biodiesel and to first generation biodiesels. These results suggest that the impacts generated by the production of methane from microalgae are strongly correlated with the electric consumption. Progresses can be achieved by decreasing the mixing costs and circulation between different production steps, or by improving the efficiency of the anaerobic process under controlled conditions. This new bioenergy generating process strongly competes with others biofuel productions.  相似文献   

16.
Modeling anaerobic digestion of microalgae using ADM1   总被引:1,自引:0,他引:1  
The coupling between a microalgal pond and an anaerobic digester is a promising alternative for sustainable energy production by transforming carbon dioxide into methane using solar energy. In this paper, we demonstrate the ability of the original ADM1 model and a modified version (based on Contois kinetics for the hydrolysis steps) to represent microalgae anaerobic digestion. Simulations were compared to experimental data of an anaerobic digester fed with Chlorella vulgaris. The modified ADM1 fits adequately the data for the considered 140 day experiment encompassing a variety of influent load and flow rates. It turns out to be a reliable predictive tool for optimising the coupling of microalgae with anaerobic digestion processes.  相似文献   

17.
Microalgae have emerged as one of the most promising feedstocks for biofuels and bio-based chemical production. However, due to the lack of effective tools enabling rapid and high-throughput analysis of the content of microalgae biomass, the efficiency of screening and identification of microalgae with desired functional components from the natural environment is usually quite low. Moreover, the real-time monitoring of the production of target components from microalgae is also difficult. Recently, research efforts focusing on overcoming this limitation have started. In this review, the recent development of high-throughput methods for analyzing microalgae cellular contents is summarized. The future prospects and impacts of these detection methods in microalgae-related processing and industries are also addressed.  相似文献   

18.
Rising oil prices and concerns over climate change have resulted in more emphasis on research into renewable biofuels from microalgae. Unlike plants, green microalgae have higher biomass productivity, will not compete with food and agriculture, and do not require fertile land for cultivation. However, microalgae biofuels currently suffer from high capital and operating costs due to low yields and costly extraction methods. Microalgae grown under optimal conditions produce large amounts of biomass but with low neutral lipid content, while microalgae grown in nutrient starvation accumulate high levels of neutral lipids but are slow growing. Producing lipids while maintaining high growth rates is vital for biofuel production because high biomass productivity increases yield per harvest volume while high lipid content decreases the cost of extraction per unit product. Therefore, there is a need for metabolic engineering of microalgae to constitutively produce high amounts of lipids without sacrificing growth. Substrate availability is a rate-limiting step in balancing growth and fatty acid (FA) production because both biomass and FA synthesis pathways compete for the same substrates, namely acetyl-CoA and NADPH. In this review, we discuss the efforts made for improving biofuel production in plants and microorganisms, the challenges faced in achieving lipid productivity, and the important role of precursor supply for FA synthesis. The main focus is placed on the enzymes which catalyzed the reactions supplying acetyl-CoA and NADPH.  相似文献   

19.
Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae.  相似文献   

20.
Despite receiving increasing attention during the last few decades, the production of microalgal biofuels is not yet sufficiently cost-effective to compete with that of petroleum-based conventional fuels. Among the steps required for the production of microalgal biofuels, the harvest of the microalgal biomass and the extraction of lipids from microalgae are two of the most expensive. In this review article, we surveyed a substantial amount of previous work in microalgal harvesting and lipid extraction to highlight recent progress in these areas. We also discuss new developments in the biodiesel conversion technology due to the importance of the connectivity of this step with the lipid extraction process. Furthermore, we propose possible future directions for technological or process improvements that will directly affect the final production costs of microalgal biomass-based biofuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号