首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent data have implicated nuclear factor kappaB (NF-kappaB) in the prevention of apoptosis in transformed cell lines exposed to tumor necrosis factor alpha (TNF-alpha). However, it is obscure whether NF-kappaB plays an anti-apoptotic role in nontransformed cells, and it is not clear whether NF-kappaB inhibits apoptosis triggered by other mediators. We investigated the effect of specific inhibition of NF-kappaB on cytokine-induced apoptosis of glomerular mesangial cells, which is important in determining the outcome of glomerulonephritis. Cultured rat mesangial cells were stably transfected with the dominant negative mutant inhibitor of NF-kappaB (IkappaBalphaM). IkappaBalphaM was resistant to stimulus-dependent degradation and suppressed NF-kappaB activation induced by TNF-alpha (10 ng/ml) or IL-1beta (10 ng/ml). IkappaBalphaM significantly sensitized mesangial cells to TNF-alpha-induced apoptosis in a dose- and time-dependent manner but had no significant effects on the level of apoptosis in the presence of proinflammatory or apoptosis-inducing stimuli including Fas ligand, IL-1alpha, IL-1beta, hydrogen peroxide, lipopolysaccharide, cycloheximide, or serum deprivation. Moreover, IkappaBalphaM-mediated sensitization to TNF-alpha overcame the protective effect of mesangial cell survival factors present in serum, which usually inhibit killing of mesangial cells by the proapoptotic stimuli used. These data show that inhibition of NF-kappaB selectively sensitizes primary adult glomerular mesangial cells to TNF-induced apoptosis but not to other mediators of cell death including the Fas ligand.  相似文献   

2.
3.
Human hepatocytes usually are resistant to TNF-alpha cytotoxicity. In mouse or rat hepatocytes, repression of NF-kappaB activation is sufficient to induce TNF-alpha-mediated apoptosis. However, in both Huh-7 human hepatoma cells and Hc human normal hepatocytes, when infected with an adenovirus expressing a mutated form of IkappaBalpha (Ad5IkappaB), which almost completely blocks NF-kappaB activation, >80% of the cells survived 24 h after TNF-alpha stimulation. Here, we report that TNF-alpha activates other antiapoptotic factors, such as sphingosine kinase (SphK), phosphatidylinositol 3-kinase (PI3K), and Akt kinase. Pretreatment of cells with N,N-dimethylsphingosine (DMS), an inhibitor of SphK, or LY 294002, an inhibitor of PI3K that acts upstream of Akt, increased the number of apoptotic cells induced by TNF-alpha in Ad5IkappaB-infected Huh-7 and Hc cells. TNF-alpha-induced activations of PI3K and Akt were inhibited by DMS. In contrast, exogenous sphingosine 1-phosphate, a product of SphK, was found to activate Akt and partially rescued the cells from TNF-alpha-induced apoptosis. Although Akt has been reported to activate NF-kappaB, DMS and LY 294002 failed to prevent TNF-alpha-induced NF-kappaB activation, suggesting that the antiapoptotic effects of SphK and Akt are independent of NF-kappaB. Furthermore, apoptosis mediated by Fas ligand (FasL) involving Akt activation also was potentiated by DMS pretreatment in Hc cells. Sphingosine 1-phosphate administration partially protected cells from FasL-mediated apoptosis. These results indicate that not only NF-kappaB but also SphK and PI3K/Akt are involved in the signaling pathway(s) for protection of human hepatocytes from the apoptotic action of TNF-alpha and probably FasL.  相似文献   

4.
The putative role of IL-4 in human and animal models of hepatitis has not yet been directly determined. We now report that direct expression of IL-4 in the liver of rats or mice using recombinant adenoviruses coding for rat or mouse IL-4 (AdrIL-4 and AdmIL-4, respectively) results in a lethal, dose-dependent hepatitis. The hepatitis induced by IL-4 was characterized by hepatocyte apoptosis and a massive monocyte/macrophage infiltrate. IL-4-induced hepatitis was independent of T cell-mediated immune responses. Hepatitis occurred even after gene transfer of IL-4 into nude rats, CD8-depleted rats, cyclosporine A-treated rats, or recombinase-activating gene 2(-/-) immunodeficient mice. Peripheral depletion of leukocytes using high doses of cyclophosphamide, and/or the specific depletion of liver macrophages with liposome-encapsulated dichloromethylene diphosphonate in rats did not block lethal IL-4-induced hepatitis. Direct transduction of hepatocytes with adenoviruses was not essential, since injection of AdrIL-4 into the hind limb induced an identical hepatitis. Finally, primary rat hepatocytes in culture also showed apoptosis when cultured in the presence of rIL-4. IL-4-dependent hepatitis was associated with increases in the intrahepatic levels of IFN-gamma, TNF-alpha, and Fas ligand. Administration of AdmIL-4 to IFN-gamma, TNF-alpha receptor type I, or TNF-alpha receptor type II knockout mice also resulted in lethal hepatitis, whereas a moderate protection was observed in Fas-deficient lpr mice. IL-4-dependent hepatocyte apoptosis could be abolished by treatment with caspase inhibitory peptides. Our results thus demonstrate that IL-4 causes hepatocyte apoptosis, which is only partially dependent on the activation of Apo-1-Fas signaling and is largely independent of any immune cells in the liver.  相似文献   

5.
The pre-administration of PGE(1) reduced inducible nitric oxide synthase (NOS-2) expression and cell death induced by d-galactosamine (d-GalN) in cultured rat hepatocytes. The present study evaluated the role of nitric oxide (NO) during PGE(1) treatment in fully established d-GalN-induced cytotoxicity in cultured human hepatocytes. Human hepatocytes were isolated from liver resections by classic collagenase perfusion. PGE(1) (1 microM) was administered at 2 h before d-GalN (40 mM), or 2 or 10 h after d-GalN in cultured hepatocytes. The production of NO was inhibited by N-omega-nitroso-l-arginine methyl ester (l-NAME) (0.5 mM). Various parameters related to oxidative and nitrosative stress, mitochondrial dysfunction, NF-kappaB activation, NOS-2 expression and cell death were evaluated in hepatocytes. NO mediated mitochondrial disturbances, nitrosative stress and cell death in d-GalN-treated hepatocytes. The administration of PGE(1) 10 h after d-GalN enhanced NF-kappaB activation, NOS-2 expression and nitrosative stress. Although PGE(1) administered at 2 h before or 2h after d-GalN reduced apoptosis and necrosis, its administration 10 h after d-GalN had no beneficial effect on cell death. In conclusion, the administration of PGE(1) during advanced d-GalN cytotoxicity induced nitrosative stress and lost its cytoprotective properties in cultured human hepatocytes.  相似文献   

6.
7.
8.
9.
Hepatocytes can be sensitized to tumor necrosis factor (TNF)-alpha toxicity by repression of NF-kappaB activation or inhibition of RNA synthesis. To determine whether both forms of sensitization lead to TNF-alpha cytotoxicity by similar mechanisms, TNF-alpha-induced cell death in RALA255-10G hepatocytes was examined following infection with an adenovirus, Ad5IkappaB, that blocks NF-kappaB activation or following cotreatment with actinomycin D (ActD). TNF-alpha treatment of Ad5IkappaB-infected cells resulted in 44% cell death within 6 h. ActD/TNF-alpha induced no death within 6 h but did lead to 37% cell death by 24 h. In both instances, cell death occurred by apoptosis and was associated with caspase activation, although caspase activation in ActD-sensitized cells was delayed. CrmA and chemical caspase inhibitors blocked Ad5IkappaB/TNF-alpha-induced cell death but did not inhibit ActD/TNF-alpha-induced apoptosis. A Fas-associated protein with death domain (FADD) dominant negative decreased Ad5IkappaB/TNF-alpha- and ActD/TNF-alpha-induced cell death by 81 and 47%, respectively. However, downstream events differed, since Ad5IkappaB/TNF-alpha but not ActD/TNF-alpha treatment caused mitochondrial cytochrome c release. These results suggest that NF-kappaB inactivation and inhibition of RNA synthesis sensitize RALA255-10G hepatocytes to TNF-alpha toxicity through distinct cell death pathways that diverge below the level of FADD. ActD-induced hepatocyte sensitization to TNF-alpha cytotoxicity occurs through a FADD-dependent, caspase-independent pathway of apoptosis.  相似文献   

10.
Park SG  Lee T  Kang HY  Park K  Cho KH  Jung G 《FEBS letters》2006,580(3):822-830
NF-kappaB activation plays a crucial role in anti-apoptotic responses in response to the apoptotic signaling during tumor necrosis factor (TNF)-alpha stimulation. TNF-alpha induces apoptosis sensitive to the hepatitis B virus (HBV) infected cells, despite sustained NF-kappaB activation. Our results indicate that the HBV infection induces sustained NF-kappaB activation, in a manner similar to the TNF-alpha stimulation. However, these effects are not merely combined. Computational simulations show that the level of form of the IKK complex activated by phosphorylation (IKK-p) affects the dynamic pattern of NF-kappaB activation during TNF-alpha stimulation in the following ways: (i) the initial level of IKK-p determines the incremental change in IKK-p at the same level of TNF-alpha stimulation, (ii) the incremental change in IKK-p determines the amplitudes of active NF-kappaB oscillation, and (iii) the steady state level of IKK-p after the incremental change determines the period of active NF-kappaB oscillation. Based on experiments, we observed that the initial level of IKK-p was upregulated and the active NF-kappaB oscillation showed smaller amplitudes for a shorter period in HepG2.2.15 cells (HBV-producing cells) during TNF-alpha stimulation, as was indicated by the computational simulations. Furthermore, we found that during TNF-alpha stimulation, NF-kappaB-regulated anti-apoptotic genes were upregulated in HepG2 cells but were downregulated in HepG2.2.15 cells. Based on the previously mentioned results, we can conclude that the IKK-p-level changes induced by HBV infection modulate the dynamic pattern of active NF-kappaB and thereby could affect NF-kappaB-regulated anti-apoptotic gene expressions. Finally, we postulate that the sensitive apoptotic response of HBV-infected cells to TNF-alpha stimulation is governed by the dynamic patterns of active NF-kappaB based on IKK-p level changes.  相似文献   

11.
Heme oxygenase overexpression or exogenous carbon monoxide (CO) protects against hepatocyte apoptosis and fulminant hepatitis. The prevention of hepatocyte apoptosis by CO has been shown to require activation of NF-kappaB. The purpose of these investigations was to determine the mechanism of CO-induced hepatocyte NF-kappaB activation and protection against apoptosis. Primary rat or mouse hepatocytes and Hep3B cells were utilized. CO exposure was performed at 250 parts per million. Main outcome measures included cell viability, reactive oxygen species (ROS) generation, and changes in the levels of the intracellular antioxidants glutathione and ascorbate. Western blotting was performed for phospho-Akt, total Akt, and IkappaBalpha. NF-kappaB activation was determined by electrophoretic mobility shift assay and luciferase reporter assays. We found that CO treatment of hepatocytes prevents spontaneous apoptosis and leads to an increase in ROS production in association with Akt phosphorylation and IkappaB degradation. CO did not increase ROS production in respiration-deficient (rho0) Hep3B cells. Both Akt phosphorylation and IkappaB degradation can be inhibited by the addition of antioxidants. Furthermore, CO-induced NF-kappaB activation is reversed by phosphatidylinositol 3-kinase (PI3-K) inhibitor (LY294002) or antioxidants. Additionally, prevention of spontaneous hepatocyte apoptosis by CO is reversed by PI3-K inhibition and antioxidants. In conclusion, these data implicate a survival pathway of CO-induced ROS, Akt phosphorylation, and NF-kappaB activation in cultured hepatocytes. This pathway may prove to be important in maintenance of hepatic function in both physiological and pathophysiological conditions.  相似文献   

12.
Plasmodium sporozoites traverse several host cells before infecting hepatocytes. In the process, the plasma membranes of the cells are ruptured, resulting in the release of cytosolic factors into the microenvironment. This released endogenous material is highly stimulatory/immunogenic and can serve as a danger signal initiating distinct responses in various cells. Thus, our study aimed at characterizing the effect of cell material leakage during Plasmodium infection on cultured mouse primary hepatocytes and HepG2 cells. We observed that wounded cell-derived cytosolic factors activate NF-kappaB, a main regulator of host inflammatory responses, in cells bordering wounded cells, which are potential host cells for final parasite infection. This activation of NF-kappaB occurred shortly after infection and led to a reduction of infection load in a time-dependent manner in vitro and in vivo, an effect that could be reverted by addition of the specific NF-kappaB inhibitor BAY11-7082. Furthermore, no NF-kappaB activation was observed when Spect(-/-) parasites, which are devoid of hepatocyte traversing properties, were used. We provide further evidence that NF-kappaB activation causes the induction of inducible NO synthase expression in hepatocytes, and this is, in turn, responsible for a decrease in Plasmodium-infected hepatocytes. Furthermore, primary hepatocytes from MyD88(-/-) mice showed no NF-kappaB activation and inducible NO synthase expression upon infection, suggesting a role of the Toll/IL-1 receptor family members in sensing cytosolic factors. Indeed, lack of MyD88 significantly increased infection in vitro and in vivo. Thus, host cell wounding due to parasite migration induces inflammation which limits the extent of parasite infection.  相似文献   

13.
14.
15.
16.
An understanding of the biochemical control of dendritic cell (DC) differentiation/activation is essential for improving T cell immunity by various immunotherapeutic approaches, including DC immunization. Ligation of CD40 enhances DC function, including conditioning for CTL priming. NF-kappaB, and particularly RelB, is an essential control pathway for myeloid DC differentiation. Furthermore, RelB regulates B cell Ag-presenting function. We hypothesized that CD40 ligand (CD40L) and TNF-alpha, which differ in their capacity to condition DC, would also differ in their capacity to activate NF-kappaB. DC differentiated for 2 days from monocytes in the presence of GM-CSF and IL-4 were used as a model, as NF-kappaB activity was constitutively low. The capacity of DC to activate T cells following CD40L treatment was enhanced compared with TNF-alpha treatment, and this was NF-kappaB dependent. Whereas RelB/p50 translocation induced by TNF-alpha was attenuated after 6 h, RelB/p50 nuclear translocation induced by CD40L was sustained for at least 24 h. The mechanism of this difference related to enhanced degradation of IkappaBalpha following CD40L stimulation. However, NF-kappaB activation induced by TNF-alpha could be sustained by blocking autocrine IL-10. These data indicate that NF-kappaB activation is essential for T cell activation by DC, and that this function is enhanced if DC NF-kappaB activation is prolonged. Because IL-10 moderates DC NF-kappaB activation by TNF-alpha, sustained NF-kappaB activation can be achieved by blocking IL-10 in the presence of stimuli that induce TNF-alpha.  相似文献   

17.
18.
Zhang Y  Venugopal SK  He S  Liu P  Wu J  Zern MA 《Cellular signalling》2007,19(11):2339-2350
Ethanol abuse is one of the major etiologies of cirrhosis. Ethanol has been shown to induce apoptosis via activation of oxidative stress, mitogen-activated protein kinases (MAPK), and tyrosine kinases. However, there is a paucity of data that examine the interplay among these molecules. In the present study we have systematically elucidated the role of novel protein kinase C isoforms (nPKC; PKCdelta and PKCepsilon) in ethanol-induced apoptosis in hepatocytes. Ethanol enhanced membrane translocation of PKCdelta and PKCepsilon, which was associated with the phosphorylation of p38MAPK, p42/44MAPK and JNK1/2, and the nuclear translocation of NF-kappaB and AP-1. This resulted in increased apoptosis in primary rat hepatocytes. Inhibition of both PKCdelta and PKCepsilon resulted in a decreased MAPK activation, decreased nuclear translocation of NF-kappaB and AP-1, and inhibition of apoptosis. In addition, ethanol activated the tyrosine phosphorylation of PKCdelta via tyrosine kinase in hepatocytes. The tyrosine phosphorylated PKCdelta was cleaved by caspase-3 and these fragments were translocated to the nucleus. Inhibition of ethanol-induced oxidative stress blocked the membrane translocation of PKCdelta and PKCepsilon, and the tyrosine phosphorylation of PKCdelta in hepatocytes. Inhibition of oxidative stress, tyrosine kinase or caspase-3 activity caused a decreased nuclear translocation of PKCdelta in response to ethanol, and was associated with less apoptosis. Conclusion: These results provide a newly-described mechanism by which ethanol induces apoptosis via activation of nPKC isoforms in hepatocytes.  相似文献   

19.
We studied the genotoxic potential of a carcinogen in the human hepatoma cell line, HepG2 and in primary rat hepatocyte culture. HepG2 is a well differentiated human hepatoblastoma cell line with biotransforming capacity. Rat hepatocytes were obtained by the standard two-step in situ perfusion technique. Following benzo(a)pyrene treatment, both HepG2 and primary rat hepatocyte culture showed unscheduled DNA synthesis with different sensitivity. In 32P-postlabelling analysis, the chromatogram revealed quantitative and qualitative differences between HepG2 and primary rat hepatocyte cultures when treated with 10 μM benzo(a)pyrene for 18 hr. The results have demonstrated that the HepG2 cell line may be used in addition to primary rat hepatocytes in risk assessment for detection of environmental carcinogens.  相似文献   

20.
Ceramide produced by hydrolysis of plasma membrane sphingomyelin (SM) in different cells including brain cells in response to proinflammatory cytokines [tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta)] plays an important role in coordinating cellular responses to stress, growth suppression, and apoptosis. The present study underlines the importance of IL-10 and IL-13, cytokines with potent antiinflammatory properties, in inhibiting the proinflammatory cytokine (TNF-alpha and IL-1beta)-mediated degradation of SM to ceramide in rat primary astrocytes. Treatment of rat primary astrocytes with TNF-alpha or IL-1beta led to rapid degradation of SM to ceramide, whereas IL-10 and IL-13 by themselves were unable to induce the degradation of SM to ceramide. Interestingly, both IL-10 and IL-13 prevented proinflammatory cytokine-induced degradation of SM to ceramide. Both IL-10 and IL-13 caused rapid activation of phosphatidylinositol (PI) 3-kinase, and inhibition of that kinase activity by wortmannin and LY294002 potently blocked the inhibitory effect of IL-10 and IL-13 on proinflammatory cytokine-mediated induction of ceramide production. This study suggests that the inhibition of proinflammatory cytokine-mediated degradation of SM to ceramide by IL-10 and IL-13 is mediated through the activation of PI 3-kinase. As ceramide induces apoptosis and IL-10 and IL-13 inhibit the induction of ceramide production, we examined the effect of IL-10 and IL-13 on proinflammatory cytokine-mediated apoptosis. Inhibition of TNF-alpha-induced apoptosis by IL-10 and IL-13 suggests that the antiapoptotic nature of IL-10 and IL-13 is probably due to the inhibition of ceramide production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号