首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract It is well known that facultative intracellular pathogens such as Salmonella suppress the host immune system. In the present study we attempted to clarify the mechanism responsible for the suppression of T-cell proliferation in mice infected with Salmonella typhimurium . The proliferation of murine spleen cells stimulated with a T-cell mitogen such as phytohemagglutinin (PHA) or concanavalin A (ConA) was significantly suppressed when the mice were infected with S. typhimurium , but not with Eschirichia coli . The suppression of T-cell proliferation did not necessarily parallel the level of interleukin-2 (IL-2) secretion, and was not restored by treatment with a calcium ionophore, indomethacin or IL-2. Only phorbol 12-myristate-13 acetate (PMA), an activator of protein kinase C (PKC), caused a slight recovery of cell proliferation with an augmentation of IL-2 secretion. Furthermore, Western blotting using anti-phosphotyrosine antibodies showed that the mitogen-induced tyrosine phosphorylation of 120-, 106-, 94-, 68- and 57-kDa proteins in murine splenic T-cells was inhibited by S. typhimurium infection. Also, the inhibition of tyrosine phosphorylation was not restored by treatment with PMA. These results suggest that the suppression of T-cell proliferation induced by Salmonella infection may be regulated by inhibition of tyrosine phosphorylation in T-cells, although the inhibition is not associated with PKC activation and subsequent IL-2 secretion of T cells.  相似文献   

2.
Abstract In a previous study, we observed that the suppression of T-cell proliferation induced by Salmonella cell-free extract was associated with augmentation of IL-2 receptor (IL-2R) α chain expression. In this study, we also observed this kind of augmentation of IL-2Rα in Salmonella -infected mice. Phytohaemagglutinin (PHA)-stimulated proliferation of murine spleen cells was significantly suppressed when the mice were infected with Salmonella typhimurium . However, expression of the α chain but not the β chain of IL-2R in lymphocytes was augmented by the infection. Analysis of the IL-2R-positive cell-populylation showed that the augmentation of IL-2Rα was not specific to certain cell subpopulations. Furthermore, the inhibition of PHA-stimulated murine spleen cell proliferation and the augmentation of IL-2Rα expression induced by the infection in lymphocytes was completely reversed by treatment with anti-interferon-γ monoclonal antibody (anti-IFN-γ Ab). These results suggest that the suppression of T-cell proliferation induced by Salmonella infection was associated with augmentation of IL-2Rα expression in an IFN-γ production-dependent manner in the same way as the suppression of T-cell proliferation induced by Salmonella cell-free extract.  相似文献   

3.
Abstract In a previous study, we observed that a cell-free Salmonella typhimurium extract induced suppression of mitogen-induced T-cell proliferation and this suppression involved non-responsiveness of T-cells to interleukin-2 (IL-2). In this study, we found that a cell-free S. typhimurium extract modulated IL-2 receptor (IL-2R) expression on phytohemagglutinin (PHA)-stimulated murine spleen cells and this was a mechanism of T-cell non-responsiveness to IL-2, but did not affect IL-2 binding to IL-2R and the consequent responses. Western blotting using anti-phosphotyrosine antibodies showed that IL-2R-mediated tyrosine phosphorylation of protein substrates in PHA-activated murine splenic T-cells, which express a high-affinity IL-2R (α- and β-chains), was not affected by treatment with the S. typhimurium cell-free extract. Furthermore, PHA-activated spleen T-cells responded to recombinant IL-2 and this was not inhibited by the extract. Surprisingly, IL-2R expression was augmented by treatment with the extract, although this was independent of IL-2 production. These results suggest that the suppression of T-cell proliferation induced by the Salmonella cell-free extract was associated with augmentation of IL-2R expression, rather than down-regulation of the IL-2 response. This may be a mechanism responsible for the Salmonella extract-evoked suppression of mitogen-induced T-cell proliferation.  相似文献   

4.
Abstract In a previous study, we observed that the purified substance Salmonella typhimurium -derived inhibitor of T-cell proliferation (STI) had an immunosuppressive effect, demonstrated as the suppression of mitogenic lectin-induced proliferation of murine spleen cells. In the present study, we confirmed the immunosuppressive effect of STI, which suppressed the proliferation of murine splenic T-lymphocytes activated with the anti-CD3 antibody (Ab) and phorbol 12-myristate-13 acetate (PMA) and this phenomenon was accompanied by augmentation of interferon-γ (IFN-γ) secretion and inhibition of interleukin-2 (IL-2) secretion. Furthermore, the augmentation of IFN-γ secretion caused IL-2 receptor α chain (IL-2R α) over expression on T-cells. However, the addition of an anti-IFN-γ Ab and recombinant IL-2 (rIL-2) did not reverse the suppressed T-cell proliferation, although the level of IL-2R α expression on T-cells recovered to around normal. Furthermore, Western blotting using an anti-phosphotyrosine Ab showed that IL-2R-mediated tyrosine phosphorylation of protein substrates in T-cells was inhibited by incubation with STI for 48 h and this inhibition was not reversed by adding the anti-IFN-γ Ab and rIL-2. These results suggest that STI-induced suppression of T-cell proliferation involves a defect in IL-2R function and/or IL-2 signaling pathway in T-cells.  相似文献   

5.
Previously, we demonstrated that the immunosuppression induced by a purified preparation of Salmonella typhimurium-derived inhibitor of T-cell proliferation (STI) can be observed in terms of suppression of the proliferation of murine spleen cells stimulated with a mitogenic lectin. In the present study, I observed that STI inhibited the interleukin-2 (IL-2) response of purified murine splenic T lymphocytes stimulated with anti-CD3 antibody. The flow cytometric analysis of IL-2 receptor (IL-2R) expression on T cells showed that STI specifically suppressed the expression of IL-2Rβ and IL-2Rγ. Furthermore, when the IL-2-dependent T-cell line CTLL-2 was incubated with STI, the growth of CTLL-2 cells was significantly inhibited. These results suggest that the target cells for STI are T cells themselves, and that the suppression of T-cell proliferation induced by STI might involve a defect in the IL-2 receptor (IL-2R) function of T cells.  相似文献   

6.
Abstract The proliferation of murine spleen cells stimulated by a T-cell mitogen such as phytohemagglutinin (PHA) or concanavalin A (ConA) was significantly suppressed when the mice were immunized with either the viable cells or the sonicate of Salmonella typhimurium but not of Escherichia coli . The suppression of T-cell proliferation caused by the sonicate of S. typhimurium was completely restored by addition of phorbol 12-myristate-13-acetate (PMA), an activator of protein kinase C (PKC). Western blots using anti-phosphotyrosine antibodies showed that the mitogen-induced tyrosine phosphorylation of 120-, 106-,94-,76-,68- and 57-kDa proteins in murine splenic T-cells was inhibited in the mice immunized with the viable cells but not the sonicate of S. typhimurium . These results suggest that the inhibition caused by the sonicate involves suppression of PKC activity, whilst that produced by viable cells involves down-regulation of tyrosine phosphorylation, and both inhibitions correlate with the induction of cell-mediated immunity in mice, as evidenced by the induction of delayed-type hypersensitivity reactions.  相似文献   

7.
In a previous study, we observed that a cell-free Salmonella typhimurium extract induced suppression of mitogen-induced T-cell proliferation and that this suppression involved non-responsiveness of T-cells to interleukin-2 (IL-2) and augmentation of IL-2 receptor (IL-2R) expression. In this study, we found that inhibition of phytohemagglutinin (PHA)-stimulated murine spleen cell proliferation induced by a cell-free S. typhimurium extract was reversed by treatment with an anti-interferon-γ monoclonal antibody (anti-IFN-γ Ab), but not by interleukin-4 or NG-monomethyl-l -arginine, which is known to inhibit nitric oxide (NO)-secretion from spleen cells in culture. However, IL-2R expression was augmented by treatment with the extract, although this was independent of an NO-mediated mechanism. Only anti-IFN-γ Ab treatment reduced the augmented IL-2R expression to a normal level. These results suggest that the suppression of T-cell proliferation induced by the Salmonella cell-free extract is associated with augmentation of IL-2R expression in an NO production-independent manner.  相似文献   

8.
Abstract In a previous study, we observed that suppression of T-cell proliferation induced by Salmonella infection is associated with inhibition of tyrosine phosphorylation in T-cells, and that a cell-free Salmonella typhimurium LT2 extract (LT2 extract) also suppressed mitogen-induced T-cell proliferation. In the present study, therefore, we attempted to clarify whether the T-cell suppression induced by LT2 extract involved inhibition of tyrosine phosphorylation in T-cells. Western blotting using anti-phosphotyrosine antibodies showed that the mitogen-induced tyrosine phosphorylation of 120-, 106-, 94-, 76-, 68-, 57- and 36-kDa proteins in murine splenic T-cells was inhibited by treatment with LT2 extract. These results suggest that the suppression of T-cell proliferation induced by LT2 extract is also associated with inhibition of tyrosine phosphorylation in T-cells.  相似文献   

9.
Immunosuppression induced by attenuated Salmonella. Reversal by IL-4   总被引:6,自引:0,他引:6  
We previously demonstrated that an aroA- strain of Salmonella typhimurium, which provides excellent protection against virulent Salmonella challenge, also rendered immunized mice unable to mount in vivo and in vitro antibody responses to heterologous Ag. Coculture studies using transwell plates indicated that suppression was mediated by soluble factors. The suppressive cells were identified as belonging to the monocytic linkage. Macrophage precursors as well as mature adherent macrophages mediated the observed suppression. In the present study, the mechanism of immunosuppression was investigated. Suppression was found to be genetically nonrestricted as spleen cells from immunized C3HeB/FeJ mice (H-2k) suppressed the anti-SRBC plaque-forming cell (PFC) responses of normal spleen cells from two MHC noncompatible mouse strains, BALB/c (H-2d) and C57BL/6 (H-2b). Time course experiments demonstrated that the addition of spleen cells from immunized mice to normal splenocytes as late as day 4 of a 5-day assay was still markedly suppressive. Furthermore, suppression of the PFC responses was accompanied by a profound inhibition of the capacity of immune splenocytes to produce IL-2 in response to in vitro stimulation by Con A. Coculture studies showed that immune spleen cells were able to suppress IL-2 production by normal splenocytes in a dose-dependent fashion. However, the suppressed PFC responses of immune spleen cells could not be reversed by the exogenous addition of up to 200 U/ml of IL-2, suggesting that immune splenocytes are also defective in their ability to respond to IL-2. In marked contrast, suppression of PFC responses was reduced by more than 50% by the addition of as little as 1 U/ml of IL-4 and was completely abrogated when 5 U/ml of IL-4 were added to in vitro cultures of spleen cells from immunized mice. The antisuppressive action of IL-4 appeared to be via its inhibitory effect on activated macrophages. The implications of the above findings are discussed.  相似文献   

10.
In murine schistosomiasis mansoni the cell-mediated immune response to the deposited eggs is mediated by CD4+ delayed-type hypersensitivity effector T (TDH) cells that produce vigorous granulomatous responses in the liver and intestines of acutely infected animals. The response is significantly down-modulated in chronically infected mice by Ag-specific Ts cells. The present study was undertaken to establish an in vitro model by which TDH-Ts cell interactions could be analyzed. To this end, Ts cells were induced in vitro by preculture of chronic or acute infection spleen cells with soluble egg Ag (SEA) for 48 h. The induced cells suppressed the SEA-specific proliferation of acute infection spleen cells by 80 to 95%. The induced suppressor cells were Ag specific in both induction and elicitation of function, and were not cytotoxic to the acute infection splenic target cells. Suppression by the induced cells was manifested within the first 24 h of the SEA-induced response as IL-2 produced by acute infection spleen cells was suppressed 62%. Phenotypic analysis by flow cytometry of the induced suppressor cells showed that CD8+ cells from acute infection spleens and CD4+ and CD8+ cells from chronic infection spleens were effector Ts cells. Taken together, CD4+ and CD8+ SEA-specific Ts cells can be induced in vitro to effectively suppress the SEA-specific lymphoproliferation and IL-2 production of acute infection spleen cells. Establishment of this in vitro model will allow us to further analyze the mechanisms of Ts cell-mediated suppression of TDH cells.  相似文献   

11.
Abstract We attempted to purify a substance that inhibits mitogen-induced proliferation of murine splenic T-lymphocytes from Salmonella typhimurium . The soluble fraction of a suspension of bacteria disrupted by sonication was chromatographed serially on Mono Q HR, Superdex 200 HR and HiLoad Superdex 75 p.g. columns. Sodium dodecyl sulfate—polyacrylamide gel electrophoresis analysis revealed that the purified active substance migrated as a single band corresponding to a molecular mass of 87 kDa. We designated the purified substance S. typhimurium -derived inhibitor of T-cell proliferation (STI). which, at 0.2 μg/ml and above, inhibited proliferation and augmented CD25 expression of phytohemagglutinin-stimulated murine splenic lymphocytes. These findings suggested that the immunosuppression induced by Salmonella infection may be attributable to STI.  相似文献   

12.
Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg) activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-kappaB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-kappaB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to na?ve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-kappaB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis-fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-kappaB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-kappaB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS.  相似文献   

13.
14.
We have studied the effect of methotrexate in murine acute graft vs host (GvH) disease at concentrations analogous to those used in human rheumatoid arthritis. The GvH reaction was induced by i.v. injection of parental spleen cells into a normal F1 recipient. The acute suppression of T cell function in GvH mice was prevented by methotrexate given orally for 10 days at 1.0 or 0.5 mg/kg but not at 0.25 mg/kg. T cell mitogen response and IL-2 secretion that were inhibited in GvH mice were restored by methotrexate. Protection from immunosuppression in drug-treated GvH mice lasted at least 3 wk after drug dosing was stopped. The mechanism of the protective effect appears to be a preferential inhibition of donor and host Lyt-2+ Ts cell proliferation. In mixing experiments we found that methotrexate inhibited Ts function in GvH mice. By dual fluorescence labeling we showed that the engraftment of donor Lyt-2+ cells was prevented by drug treatment. This was not true of donor L3T4+ cells which were clearly present in the spleens of GvH mice after methotrexate treatment. These donor L3T4 cells were functional in that they induced the production of anti-DNA autoantibodies in the methotrexate-treated GvH mice.  相似文献   

15.
The effects of different recombinant human cytokines and cytokine inhibitors were compared in a culture system in which cell contact with mutant EL-4 thymoma cells of murine origin efficiently stimulates human B cell proliferation and Ig secretion in conjunction with human T cell supernatant. IL-1 alpha, IL-1 beta, TNF-alpha, and IL-2 co-stimulated B cell proliferation and IgM, IgG, and IgA secretion, whereas IL-3, IL-4, IL-5, IL-6, IFN-gamma, or GM-CSF had weak or no activity in this regard. In contrast, TGF-beta 1 was strongly inhibitory. A very strict hierarchy of cytokine interactions was found in that IL-1 was necessary to induce TNF-alpha responsiveness, and TNF-alpha the IL-2 responsiveness, of the B cells. Most likely the small number of starting B cells in the present assay (300 FACS-separated B cells/200 microliters) minimized the effects of autocrine B cell factors. IL-4 together with IL-1 induced IgE secretion, and the IgE secretion was further increased by TNF-alpha. IFN-gamma had no modulatory effect on the IL-4 dependent IgE response in this system. Pretreatment of B cells with IL-1R antagonist (IL-1ra, which binds to IL-1R) or addition of soluble TNF receptor type 1 (sTNF-R55, which binds to TNF) completely inhibited the IL-1 or TNF-alpha effects, respectively. This occurred in a specific manner; the inhibition was reversed by a large excess of cytokine. IL-1ra also inhibited a B cell response induced by PMA-preactivated EL-4 cells alone. Because B cells responding to such preactivated EL-4 cells did not acquire TNF-alpha responsiveness, no IL-1 was apparently involved under this assay condition. It appears, therefore, 1) that IL-1ra can act on B cells and 2) that this antagonist may not only block IL-1R, but may provide a direct or indirect inhibitory signal interfering even with IL-1-independent B cell activation.  相似文献   

16.
The mechanism(s) underlying the potent accessory cell function of dendritic cells (DC) remains unclear. The possibility was considered that a soluble factor(s) released during the interaction of DC and T cells might contribute to the potent T cell activating function of DC. Culture supernatants were generated from mixtures of murine spleen DC and periodate-treated spleen T cells and were examined for the presence of known cytokine activities and factors capable of enhancing T cell responsiveness to IL-2. Serum-free supernatants from 24 h DC-T cell co-cultures exhibited high levels of IL-2, detectable levels of IL-3, and negligible levels of IL-1, -4, -5, -6, and TNF. A factor(s) was also identified with an apparent Mr of 12.5 to 17.0 kDa, henceforth designated IL-2 enhancing factor (IL-2EF), which enhanced the IL-2-induced proliferation of murine thymocytes, CTLL, and HT-2 cells by approximately three- to fourfold. This enhancement was also observed in the presence of neutralizing antibodies to murine IL-1 alpha, -1 beta, -3, -4, -5, -6, granulocyte-macrophage (GM)-CSF, TNF, and IFN-gamma. However, IL-2EF failed to enhance: 1) the activity of IL-1, -3, -4, -5, or -6 on cells responsive to these cytokines; 2) IL-2-augmented, IL-5-induced BCL1 proliferation; and 3) either PHA- or Con A-stimulated thymocyte proliferation. Moreover, neither IFN-gamma nor GM-CSF exhibited IL-2EF activity. When DC and T cells were cultured separately (after an initial 12 h co-culture period), IL-2EF activity resided predominantly in the T cell-derived supernatants. These and other data indicate that IL-2EF, a heat-labile T cell-derived 12.5 to 17.0 kDa protein, is distinct from IL-1 alpha, -1 beta, -2, -3, -4, -5, -6, TNF, IFN-gamma, GM-CSF, and previously described factors that co-stimulate thymocyte proliferation in the presence of Con A or PHA. It is suggested that IL-2EF functions to specifically enhance IL-2-driven T cell proliferation and contributes to the potent activation of T cells induced by DC.  相似文献   

17.
B cell hyperactivity characterizes many autoimmune diseases. In NZB mice this is manifested by a variety of immunologic aberrations, including increased B cell proliferation and hyper IgM and IgA secretion in vitro. Recent studies have shown that IgA secretion can be suppressed or enhanced in an isotype-specific manner by a soluble factor(s), called IgA-binding factor (IgABF), produced by IgA FcR-bearing T cells. We now show that T cells from young NZB mice, cultured with high concentrations of IgA, produce an IgABF that has aberrant biologic activity when compared to IgABF produced from IgA FcR+ T cells of BALB/c mice. Although BALB/c IgABF normally suppresses proliferation and secretion by IgA-producing B cells, neither proliferation nor IgA secretion from normal murine IgA-B cells is suppressed by NZB IgABF. In fact, IgA secretion is significantly enhanced by NZB IgABF. We also present the first evidence of IgA anti-mouse erythrocyte (anti-MRBC) autoantibody-forming cells present in the spleens of NZB mice. Whereas BALB/c IgABF suppresses the in vitro generation of IgA anti-MRBC autoantibody-forming cells by NZB spleen cells, NZB IgABF enhances this response. Of particular interest is the development of IgA anti-MRBC autoantibody-forming cells in cultures of spleen cells from nonautoimmune BALB/c mice in the presence of NZB IgABF. These studies suggest that isotype-specific T cells factors might play an important role in the development of autoantibody-forming cells.  相似文献   

18.
Clearance of facultative intracellular pathogens such as Salmonella requires IFN-gamma from CD4 T cells. Mechanisms linking intracellular pathogen recognition with induction of IFN-gamma-producing T cells are still poorly understood. We show in this study that IL-12 is not required for commitment to the IFN-gamma-producing T cell response in infection with Salmonella typhimurium, but is needed for its maintenance. The IL-12-independent signals required for commitment depend on events during the first hour of infection and are related to Ag presentation. Even transient attenuation of Ag presentation early during infection specifically abrogates the IFN-gamma component of the resulting CD4 T cell response. The IL-12 needed for maintenance is also better induced by live rather than dead bacteria in vivo, and this difference is due to specific suppression of IL-12 induction by dead bacteria. Presence of exogenous IL-4 down-modulates IL-12 production by macrophages activated in vitro. Furthermore, macrophages from IL-4-null mice secrete high levels of both IL-12 and IL-18 in response to stimulation in vivo even with dead bacteria, but this does not lead to induction of IFN-gamma-secreting T cells in response to immunization with dead S. typhimurium. Early IL-4 is contributed by triggering of CD4 NK T cells by dead, but not live, bacteria. Thus, Ag presentation-related IL-12-independent events and IL-4-sensitive IL-12-dependent events play crucial complementary roles in the generation of the IFN-gamma-committed CD4 T cell component of the immune response in Salmonella infection.  相似文献   

19.
Regulatory CD4(+) T cells were induced in the Tg4 TCR transgenic mouse specific for the N-terminal peptide (Ac1-9) of myelin basic protein by intranasal administration of a high-affinity MHC-binding analog (Ac1-9[4Y]). Peptide-induced tolerant cells (PItol) were anergic, failed to produce IL-2, but responded to Ag by secretion of IL-10. PItol cells were predominantly CD25(-) and CTLA-4(+) and their anergic state was reversed by addition of IL-2 in vitro. PItol cells suppressed the response of naive Tg4 cells both in vitro and in vivo. The in vitro suppression mediated by these cells was not reversed by cytokine neutralization and was cell-cell contact-dependent. However, suppression of proliferation and IL-2 production by PItol cells in vivo was abrogated by neutralization of IL-10. These results emphasize an important role for IL-10 in the function of peptide-induced regulatory T cells in vivo and highlight the caution required in extrapolating mechanisms of T regulatory cell function from in vitro studies.  相似文献   

20.
Ribavirin improves outcomes of therapy in chronic hepatitis C but its mode of action has still remained unclear. Since ribavirin has been proposed to modulate the host's T cell responses, we studied its direct effects on CD4(+) T cell clones with diverse functional polarization which had been generated from patients with chronic hepatitis C. We analysed in vitro proliferation ([(3)H] thymidine uptake) and cytokine responses (IL-10, IFN-gamma) at varying concentrations of ribavirin (0-10μg/ml) in 8, 9 and 7 CD4(+) TH1, TH2 and regulatory T cell (Treg) clones, respectively. In co-culture experiments, we further determined effects of ribarivin on inhibition of TH1 and TH2 effector cells by Treg clones. All clones had been generated from peripheral blood of patients with chronic hepatitis C in the presence of HCV core protein. Ribavirin enhanced proliferation of T effector cells and increased production of IFN-gamma in TH1 clones, but had only little effect on IL-10 secretion in TH2 clones. However, ribavirin markedly inhibited IL-10 release in Treg clones in a dose dependent fashion. These Treg clones suppressed proliferation of T effector clones by their IL-10 secretion, and in co-culture assays ribavirin reversed Treg-mediated suppression of T effector cells. Our in vitro data suggest that - in addition to its immunostimulatory effects on TH1 cells - ribavirin can inhibit functions of HCV-specific Tregs and thus reverses Treg-mediated suppression of T effector cells in chronic hepatitis C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号