首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The events accompanying the development of piericidin sensitivity and of energy coupling site 1 during the transition of Candida utilis cells from the log phase to the late stationary phase of growth have been investigated. There is a large increase in DPNH dehydrogenase (DPNHD) activity, and major increases in the EPR signals of iron-sulfur centers 1, 2, and 3 of the enzyme, as measured at 13°K. The increase in DPNHD activity, however, does not reflect the increased development of the same enzyme as is present in the log phase, for the enzyme being synthesized in the stationary phase is different from that present in the log phase, as judged by juglone reductase and DPNH oxidase activities, which declined during the transition, and by stability, kinetics, and in the type of EPR signal present, which are different in the log and stationary phases. On catabolite repression of stationary phase cells the converse occurs: the specific activities of juglone reductase and DPNH oxidase rise, DPNHD activity and EPR signals corresponding to centers 1 and 2 disappear. This process of catabolite repression by ethanol is prevented by cycloheximide.  相似文献   

2.
EPR signals arising from at least seven iron-sulfur centers were resolved in both reconstitutively active and inactive NADH dehydrogenases, as well as in particulate NADH-UQ reductase (Complex I). EPR lineshapes of individual iron-sulfur centers in the active dehydrogenase are almost unchanged from that in Complex I. Iron-sulfur centers in the inactive dehydrogenase give broadened EPR spectra, suggesting that modification of iron-sulfur active centers is associated with loss of the reconstitutive activity of the dehydrogenase. With the reconstitutively active dehydrogenase, the Em8.0 value of Center N-2 (iron-sulfur centers associated with NADH dehydrogenase are designated with prefix N) was shifted to a more negative value than in Complex I and restored to the original value on reconstitution of the enzyme with purified phospholipids.  相似文献   

3.
1. An NADH-ferricyanide reductase activity has been isolated from the respiratory chain of Torulopsis utilis by using detergents. The isolated enzyme contains non-haem iron, acid-labile sulphide and FMN in the molar proportions 27.5:28.4:1. The preparation is free of FAD and largely free of cytochrome. 2. The enzyme catalyses ferricyanide reduction by NADPH at about 1% of the rate with NADH, and reacts poorly with acceptors other than ferricyanide. The rates of reduction of some acceptors are, as percentages of the rate with ferricyanide: menadione, 0.35%; lipoate, 0.01%; cytochrome c, 0.065%; dichlorophenolindophenol, 0.35%; ubiquinone-1, 0.08%. 3. Several properties of submitochondrial particles of T. utilis (non-haem iron, acid-labile sulphide, FMN and an NADH-reducible electron-paramagnetic-resonance signal) were found to co-purify with the NADH-ferricyanide reductase activity. Thus about 70% of the FMN and, within the limits of accuracy of the experiments, 100% of the non-haem iron and acid-labile sulphide of submitochondrial particles derived from T. utilis cells grown under conditions of glycerol limitation (but relatively low iron availability) can be attributed to the NADH-ferricyanide reductase. 4. It was also shown that the component of submitochondrial particles specifically bleached at 460nm by NADH [species 1 of Ragan & Garland (1971)] co-purifies with the NADH-ferricyanide reductase. 5. This successful purification of an NADH dehydrogenase from T. utilis forms a starting point for investigating the molecular properties of phenotypically modified mitochondrial NADH oxidation pathways that lack energy conservation between NADH and the cytochromes.  相似文献   

4.
1. The electron paramagnetic resonance spectra at 15 K of reduced membrane particles of Paracoccus denitrificans exhibit resonance signals with g values, line shapes and temperature profile which are similar to the signals of the iron-sulfur centers observed in the NADH-ubiquinone segment of mitochondrial respiratory chains. These iron-sulfur centers are reducible with NADH, NADPH as well as chemically with dithionite. 2. Sulphate-limited growth of Paracoccus denitrificans results in the loss of an electron paramagnetic resonance signal (gz approximately 2.05, gy approximately gx approximately 1.92) which has properties similar to those of iron-sulfur center 2 of the NADH dehydrogenase of mitochondrial origin. The loss of this signal is accompanied by a decrease in the NADH oxidase and NADH ferricyanide oxidoreductase activities to respectively 30 and 40% of the values found for succinate-limited growth conditions. In addition respiration in membrane particles from sulphate-limited cells loses its sensitivity to rotenone. 3. Since sulphate-limited growth of Paracoccus denitrificans induces loss of site I phosphorylation [Arch. Microbiol. (1977) 112, 25-34] these observations suggest a close correlation between site I phosphorylation, rotenone-sensitivity and the presence of an electron paramagnetic resonance signal with gz approximately 2.05 and gy approximately gx approximately 1.92.  相似文献   

5.
Plasma membranes isolated from rat liver by two-phase partition exhibited dehydrogenase activities for ascorbate free radical (AFR) and ferricyanide reduction in a ratio of specific activities of 1 : 40. NADH-AFR reductase could not be solubilized by detergents from plasma membrane fractions. NADH-AFR reductase was inhibited in both clathrin-depleted membrane and membranes incubated with anti-clathrin antiserum. This activity was reconstituted in plasma membranes in proportion to the amount of clathrin-enriched supernatant added. NADH ferricyanide reductase was unaffected by both clathrin-depletion and antibody incubation and was fully solubilized by detergents. Also, wheat germ agglutinin only inhibited NADH-AFR reductase. The findings suggest that NADH-AFR reductase and NADH-ferricyanide reductase activities of plasma membrane represent different levels of the electron transport chain. The inability of the NADH-AFR reductase to survive detergent solubilization might indicate the involvement of more than one protein in the electron transport from NADH to the AFR but not to ferricyanide.  相似文献   

6.
Mitochondrial NADH dehydrogenase has been purified from rat liver mitochondria by protamine sulfate fractionation and DEAE-Sephadex chromatography. The enzyme is water-soluble and its molecular weight has been estimated at 400 +/- 50 kilodaltons. NADH-ferricyanide reductase and NADH cytochrome c reductase activities have been studied and the kinetic parameters have been determined. Both substrates, NADH and the electron acceptor (ferricyanide or cytochrome c) have an inhibitor effect on the reductase activities and the kinetic mechanism of the enzyme is ping-pong bi-bi.  相似文献   

7.
The coupling constants J between the iron atoms in ferredoxin type iron-sulfur proteins containing binuclear clusters were evaluated by two parallel methods. The temperature dependence of the EPR linewidths and integrated abosrption intensities are both related to the energy of the first excited state. The values of J obtained were: center S-1 in succinate dehydrogenase, 90 cm-1; Rieske's iron-sulfur center, 65 cm-1; adrenodoxin, 270 cm-1. The behavior of iron-sulfur center N-1a in NADH:UQ reductase was also examined; its similarity to that of center S-1 indicates that center N-1a is also a binuclear iron-sulfur center, with J = 90 cm-1. Greater rhombic distortion present in the EPR spectrum of a binuclear cluster was associated with smaller values of J.  相似文献   

8.
1. Mitochondria prepared from Torulopsis utilis grown in a chemostat with iron-limited growth were found to lack energy conservation but not electron flow in that segment of the respiratory chain leading from intramitochondrial NADH to the cytochromes [i.e. the site 1 segment (Lehninger, 1964)]. 2. Site 1 energy conservation was present in mitochondria prepared from cells grown under conditions of limitation by glycerol, ammonium and magnesium. Phosphate-limited growth resulted in mitochondrial preparations without respiratory control. 3. Mitochondria from cells grown under conditions of iron limitation were insensitive to the respiratory inhibitor piericidin A, whereas sensitivity was present in mitochondria prepared from glycerol-, ammonium-, magnesium- or phosphate-limited cells. 4. These observations are considered to provide indirect evidence for a role of non-haem iron in the mechanism of energy conservation and also piericidin A sensitivity in T. utilis mitochondria. 5. A readily constructed and inexpensive pH-measuring and -controlling circuit is described for use with continuous-culture apparatus.  相似文献   

9.
Evidence is presented for a transmembranous NADH-dehydrogenase in human erythrocyte plasma membrane. We suggest that this enzyme is responsible for the ferricyanide reduction by intact cells. This NADH-dehydrogenase is distinctly different from the NADH-cytochromeb 5 reductase on the cytoplasmic side of the membrane. Pretreatment of erythrocytes with the nonpenetrating inhibitor diazobenzene sulfonate (DABS) results in a 35% loss of NADH-ferricyanide reductase activity in the isolated plasma membrane. Since NADH and ferricyanide are both impermeable, the transmembrane enzyme can only be assayed in open membrane sheets with both surfaces exposed, and not in closed vesicles. The transmembrane dehydrogenase has affinity constants of 90 µM for NADH and 125 µM for ferricyanide. It is inhibited byp-chloromercuribenzoate, bathophenanthroline sulfonate, and chlorpromazine.  相似文献   

10.
In addition to the two species of ferredoxin-type iron-sulfur centers (Centers S-1 and S-2), a third iron-sulfur center (Center S-3), which is paramagnetic in the oxidezed state analogous to the bacterial high potential iron-sulfur protein, has bwen detected in the reconstitutively active soluble succinate dehydrogenase preparation. Midpoint potential (at pH 7.4) of Center S-3 determined in a particulate succinate-cytochrome c reductase is +60 +/- 15 mV. In soluble form, Center S-3 becomes extremely labile towards oxygen or ferricyanide plus phenazine methosulfate similar to reconstitutive activity of the dehydrogenase. Thus, even freshly prepared reconstitutively active enzyme preparations show EPR spectra of Center S-3 which correspond approximately to 0.5 eq per flavin; in particulate preparations this component was found in a 1:1 ratio to flavin. All reconstitutively inactive dehydrogenase preparations that Center S-3 is an innate constituent of succinate dehydrogenase and plays an important role in mediating electrons from the flavoprotein subunit to most probably ubiquinone and then to the cytochrome chain.  相似文献   

11.
Iron-sulfur centers in mitochondria prepared from Morris hepatomas with different growth rates were compared with those in host liver and nontumor-bearing rat liver mitochondria by EPR measurements (< 77° K). In the slow growing hepatoma 16, EPR signals from iron-sulfur centers located in the NADH dehydrogenase region were specifically diminished. In the rapidly growing hepatoma 7777, EPR signals of all the iron-sulfur centers showed considerably diminished intensity. In hepatoma 7800 having an intermediate growth rate, all iron-sulfur centers showed no change. Those changes in iron-sulfur centers correlated with observed respiratory activities of Morris hepatoma mitochondria. No general correlation was obtained between these parameters and the growth rate of the tumors.  相似文献   

12.
The NADH-quinone oxidoreductases of the bacterial respiratory chain could be divided in two groups depending on whether they bear an energy-coupling site. Those enzymes that bear the coupling site are designated as NADH dehydrogenase 1 (NDH-1) and those that do not as NADH dehydrogenase 2 (NDH-2). All members of the NDH-1 group analyzed to date are multiple polypeptide enzymes and contain noncovalently bound FMN and iron-sulfur clusters as prosthetic groups. The NADH-ubiquinone-1 reductase activities of NDH-1 are inhibited by rotenone, capsaicin, and dicyclohexylcarbodiimide. The NDH-2 enzymes are generally single polypeptides and contain non-covalently bound FAD and no iron-sulfur clusters. The enzymatic activities of the NDH-2 are not affected by the above inhibitors for NDH-1. Recently, it has been found that both of these types of the NADH-quinone oxidoreductase are present in a single strain of bacteria. The significance of the occurrence of these two types of enzymes in a single organism has been discussed in this review.  相似文献   

13.
The inhibition of NADH dehydrogenase by 1-methyl-4-phenylpyridinium (MPP+) leading to ATP depletion has been proposed to explain cell death in the expression of the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Electron paramagnetic resonance studies show no effect of MPP+ on the reduction of the iron-sulfur clusters of NADH dehydrogenase. Mitochondria inhibited by MPP+ were sonicated and both the NADH oxidase and the NADH-Q reductase activities were measured. NADH oxidase activity was not fully restored to control levels, but NADH-Q reductase activity was the same as that of the control. Neither succinate-oxidase nor succinate-Q reductase activities were inhibited. These data indicate that MPP+ interaction with NADH dehydrogenase interferes with the passage of electrons from the iron-sulfur cluster of highest potential to endogenous Q10 but that the inhibition can be relieved by the addition of a small, water-soluble Q analog. Inhibition at this site is sufficient to explain the inhibition of respiration and no inhibition of other mitochondrial functions was observed.  相似文献   

14.
Deamino-NADH/ubiquinone 1 oxidoreductase activity in membrane preparations from Escherichia coli GR19N is 20-50% of NADH/ubiquinone 1 oxidoreductase activity. In comparison, membranes from E. coli IY91, which contain amplified levels of NADH dehydrogenase, exhibit about 100-fold higher NADH/ubiquinone 1 reductase activity but about 20-fold less deamino-NADH/ubiquinone 1 reductase activity. Deamino-NADH/ubiquinone 1 reductase is more sensitive than NADH/ubiquinone 1 reductase activity to inhibition by 3-undecyl-2-hydroxyl-1,4-naphthoquinone, piericidin A, or myxothiazol. Furthermore, GR19N membranes exhibit two apparent Kms for NADH but only one for deamino-NADH. Inside-out membrane vesicles from E. coli GR19N generate a H+ electrochemical gradient (interior positive and acid) during electron transfer from deamino-NADH to ubiquinone 1 that is large and stable relative to that observed with NADH as substrate. Generation of the H+ electrochemical gradient in the presence of deamino-NADH is inhibited by 3-undecyl-2-hydroxy-1,4-naphthoquinone and is not observed in IY91 membrane vesicles or in vesicles from GR19N that are deficient in deamino-NADH/ubiquinone 1 reductase activity. The data provide a strong indication that the E. coli aerobic respiratory chain contains two species of NADH dehydrogenases: (i) an enzyme (NADH dh I) that reacts with deamino-NADH or NADH whose turnover leads to generation of a H+ electrochemical gradient at a site between the primary dehydrogenase and ubiquinone and (ii) an enzyme (NADH dh II) that reacts with NADH exclusively whose turnover does not lead to generation of a H+ electrochemical gradient between the primary dehydrogenase and ubiquinone 1.  相似文献   

15.
1. A spectroscopic resolution has been made of the components contributing to the ;iron-flavoprotein' trough extending from 450 to 520nm in the reduced-minus-oxidized difference spectrum of submitochondrial particles of Torulopsis utilis. 2. Seven components were identified other than cytochrome b, ubiquinone and succinate dehydrogenase. On the basis of the effects of iron- and sulphate-limited growth of cells on their subsequently derived electron-transport particles, and also by consideration of analytical measurements of the concentration of FMN, FAD, non-haem iron and acid-labile sulphide in the electron-transport particles in relation to the magnitude of the spectroscopic changes, it was possible to identify five of these components as follows: species 1a, the flavin of NADH dehydrogenase ferroflavoprotein; species 1b, the iron-sulphur component of NADH dehydrogenase ferroflavoprotein; species 1', the flavin of an NADPH dehydrogenase; species 2, an iron-sulphur or ferroflavoprotein component; species 3, the flavin of l-3-glycerophosphate dehydrogenase. Two additional components were a fluorescent flavoprotein, probably lipoamide dehydrogenase, and a b-type cytochrome reducible by NADH or NADPH but not reoxidizable by the respiratory chain. 3. Species 1b and 2 were undetectable in electron-transport particles from iron- or sulphate-limited cells, but could be recovered in vivo under non-growing conditions. 4. The recovery in vivo of species 2 but not species 1b was inhibited by cycloheximide. 5. The recovery of species 1b correlates with the recovery of site 1 conservation. 6. The recovery of species 1b with species 2 correlates with the recovery of piericidin A sensitivity. 7. Evidence is presented for an NADPH dehydrogenase distinct from NADH dehydrogenase. The oxidation of NADH and NADPH by the respiratory chain is sensitive to piericidin A, and an iron-sulphur protein common to both pathways (species 2) is suggested as the piericidin A-sensitive component. 8. The approximate E'(0) (pH7.0) values of species 1 (a and b, low potential) and species 2 (high potential) indicate that site 1 energy conservation occurs between the levels of species 1 (a and b) and species 2.  相似文献   

16.
NADH acts as an incomplete competitive inhibitor for 5,8-dioxy-1,4-naphtoquinone during its rotenone-insensitive reduction by mitochondrial NADH:ubiquinone reductase. NAD+ and ADP-ribose act as incomplete mixed-type inhibitors. Ki of NAD+ and NADH towards quinone are about one order less than towards ferricyanide. The bimolecular rate constant of the reduction of the enzyme by NADH in the quinone reductase reaction is about 2 times less than that of ferricyanide reductase reaction. These data indicate that the reduction site of 5,8-dioxy-1,4-naphtoquinone is close to NAD+/NADH and ferricyanide binding site. It seems that during the steady-state reduction of ferricyanide and 5,8-dioxy-1,4-naphtoquinone these oxidizers react with NADH:ubiquinone reductase reduced to different extents.  相似文献   

17.
Incubation of submitochondrial particles with relatively low concentrations of ethanol (20–100 mm) or acetaldehyde (1–10 mm) produces alterations in the electron paramagnetic resonance spectra of the iron-sulfur centers in the NADH dehydrogenase segments of the respiratory chain. The iron-sulfur centers in the NADH dehydrogenase region are most sensitive to both ethanol and acetaldehyde, in comparison to the iron-sulfur centers in succinate dehydrogenase and the cytochrome b-c region. Centers N-3, 4, N-5, 6 and N-1b are affected after relatively short incubation periods (3–30 min) while center N-2 shows considerable sensitivity over somewhat longer incubations (20–90 min). The most ethanol-sensitive center in the succinate dehydrogenase region of the respiratory chain is high potential iron-sulfur protein-type center S-3. Potentiometric analysis shows that these alterations are not due to simple changes in the redox state caused by addition of dissolved oxygen. Changes in the electron paramagnetic resonance spectra can be correlated with decreased rates of oxidation of NADH and, to a lesser extent, succinate in both ethanol- and acetaldehyde-treated submitochondrial particles.  相似文献   

18.
The respiratory chain-linked NADH-quinone reductase (NQR) and NADH-ferricyanide dehydrogenase (NFD) were extracted from membranes of Escherichia coli by n-dodecyl octaethyleneglycol monoether detergent and purified by DEAE-Sephacel, DEAE-5PW and Bio-Gel HTP column chromatography. The purified NQR contained FAD as a cofactor, catalyzed the reduction of ubiquinone-1 (Q1) and reacted with NADH, but not with deamino-NADH (d-NADH), with an apparent Km of 48 microM. On the other hand, the purified NFD contained FMN as a cofactor, reacted with both NADH and d-NADH, and catalyzed the reduction of ferricyanide but not Q1. NFD showed a high affinity for both NADH and d-NADH with a Km of 7-9 microM. NFD was inactivated, whereas NQR was rather activated, by preincubation with an electron donor in the absence of electron acceptor. These properties were compared with those of activities observed with inverted membrane vesicles with special reference to the generation of inside-positive membrane potential (delta psi). It was found that d-NADH-reactive FMN-containing NFD is a dehydrogenase part of energy-generating NADH-quinone reductase complex. The FAD-containing NQR was very similar to that purified by Jaworowski et al. (Biochemistry (1981) 20, 2041-2047), and reduced Q1 without generating delta psi.  相似文献   

19.
NADH dehydrogenase activity was characterized in the mitochondrial lysates of Phytomonas serpens, a trypanosomatid flagellate parasitizing plants. Two different high molecular weight NADH dehydrogenases were characterized by native PAGE and detected by direct in-gel activity staining. The association of NADH dehydrogenase activities with two distinct multisubunit complexes was revealed in the second dimension performed under denaturing conditions. One subunit present in both complexes cross-reacted with the antibody against the 39 kDa subunit of bovine complex I. Out of several subunits analyzed by MS, one contained a domain characteristic for the LYR family subunit of the NADH:ubiquinone oxidoreductases. Spectrophotometric measurement of the NADH:ubiquinone 10 and NADH:ferricyanide dehydrogenase activities revealed their different sensitivities to rotenone, piericidin, and diphenyl iodonium.  相似文献   

20.
Hen liver microsomes contained 0.20 nmol of cytochromeb5 per mg of protein. Upon addition of NADH about 95% cytochrome b5 was reduced very fast with a rate constant of 206 s?1When ferricyanide was added to the reaction system the cytochrome stayed in the oxidized form until the ferricyanide reduction was almost completed. The reduced cytochrome b5 in microsomes was oxidized very rapidly by ferricyanide. The rate constant of 4.5 × 108m?1 s?1, calculated on the basis of assumption that ferricyanide reacts directly with the cytochrome, was found to be more than 100 times higher than that of the reaction between ferricyanide and soluble cytochrome b5. To explain the results, therefore, the reverse electron flow from cytochrome b5 to the flavin coenzyme in microsomes was assumed.By three independent methods the specific activity of the microsomes was measured at about 20 nmol of NADH oxidized per s per mg of protein and it was concluded that the reduction of the flavin coenzyme of cytochrome b5 reductase by NADH is rate-limiting in the NADH-cytochrome b5 and NADH-ferricyanide reductase reactions of hen liver microsomes. In the NADH-ferricyanide reductase reaction the apparent Michaelis constant for NADH was 2.8 μm and that for ferricyanide was too low to be measured. In the NADH-cytochrome c reductase reaction the maximum velocity was 2.86 nmol of cytochrome c reduced per s per mg of protein and the apparent Michaelis constant for cytochrome c was 3.8 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号