首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
DNA芯片与应用   总被引:4,自引:0,他引:4  
DNA芯片就是利用光导原位化学合成或液相合成自动化点样,将数以万计的寡核苷酸固定于固相支持物硅片、尼龙膜上,与荧光素或同位素标记的特检样本DNA/cDNA杂交,通过对杂交信号分析反映样本中的DNA序列信息。它广泛应用基因表达、DNA测序、基因分型、基因突变与多态性检测和遗传作图等生物医学研究领域。  相似文献   

2.
对DNA芯片的发生、发展、技术特点及在生命科学中的应用作了回顾,结果表明DNA芯片通过DNA或RNA样品与阵列的的杂交,可用于基因测序、基因表达、新基因的发现、突变的检测等等领域,虽然DNA芯片目前存在着不足和缺陷,但它正成为基因组和后基因组研究的重要工具.  相似文献   

3.
基因芯片技术及其应用   总被引:7,自引:0,他引:7  
基因芯片是近年来产生的一项生物高技术。它是利用原位合成或合成后交联法,将大量的核酸片段有规则地固定在固相支持物如载玻片、金属片、尼龙膜上,制成芯片,然后将要检测的样品用荧光素或同位素标记,再与做成的芯片充分杂交,通过对杂交信号的检测来分析样品中的信息。基因芯片技术已在基因表达水平的检测、基因点突变及多态性检测、DNA序列测定、寻找可能的致病基因和疾病相关基因、蛋白质作图、基因组文库作图等方面显示出了广阔的应用前景。  相似文献   

4.
DNA芯片的制作原理及其应用   总被引:3,自引:0,他引:3  
陈全战  庄丽芳 《生物学杂志》2003,20(2):37-39,47
综述了DNA芯片制作原理和杂交信号检测方法及发展趋势,对DNA芯片在研究基因结构和基因表达等方面的应用进行了分析。  相似文献   

5.
一种基于寡核苷酸微阵列芯片的多重可扩增探针杂交技术   总被引:2,自引:0,他引:2  
多重可扩增探针杂交技术(multiplex amplifiable probe hybridization,MAPH)是近年来发展起来的一种用于基因组中DNA拷贝数检测的新技术。并发展了一种基于寡核苷酸微阵列芯片的MAPH技术。该方法根据所检测的DNA序列,制备若干具有通用引物的FCR产物作为可扩增探针组,与固定在尼龙膜上待测的基因组DNA杂交。用磁珠回收特异性杂交的探针,经生物素标记的通用引物扩增后,与相应的寡核苷酸微阵列芯片杂交。该特异性的寡核苷酸微阵列芯片包括10个抗肌营养不良基因的外显子探针和阴性、阳性探针。杂交清冼后,链霉亲和素-Cy3染色用芯片扫描仪得到杂交的荧光图像。分析荧光信号的强度差异给出特定基因片段拷贝数的变化。该方法用微阵列技术代替MAPH中的电泳检测技术,可大幅度增加检测的通量。选择了一个正常男性、一个正常女性和一个肌营养不良症患者的基因组DNA来进行验证。结果表明,该方法能够同时给出抗肌营养不良基因多个外显子中的基因片段拷贝数差异信息。  相似文献   

6.
基于引物链延伸反应的基因传感器的研究   总被引:1,自引:0,他引:1  
依据晶体谐振频率是其表面沉积物的函数和模板-引物杂交后引物链延伸的酶促反应原理,构建了引物链延伸反应性基因传感器技术.该技术的主要特点是以快速、敏感的频变信息作为基因杂交与引物链延伸的显示系统.研究结果提示,本项技术可用于核酸同源性分析、微量DNA检测、DNA整合性的确定,也可用于目的基因的分离、特定条件下的基因突变分析及推断某基因在其基因组中的位置.  相似文献   

7.
寡核苷酸DNA Microarray用于HLA DRB1基因分型的研究   总被引:17,自引:1,他引:17  
对寡核苷酸DNA Microarray用于HLA DRB1基因分型的技术进行研究。常规的酚/氯仿法提取标准血样基因组DNA,在DRB1的exon2区域设计一对引物,经PCR扩增基因组相应区段并用Cy5-dCTP进行标记。设计寡核苷酸分型探针,将探针固定在APS-PDC法制作的DNA Microarray上,用标记的PCR产物与之杂交,扫描仪对杂交效果进行扫描,Imagene软件对杂交图像进行分析。共检测了33例标准血样的HLA DRB1基因型。检测结果证明研制的DNA Microarray准确、灵敏。DNA Microarray技术可以有效地检测DRB1等位基因,对比常规的PCR-SSP和PCR-SSO方法、分型基因芯片方法更为直观,并有集成化优势。  相似文献   

8.
利用放射性同位素标记的基因片段或cDNA探针进行核酸分子杂交是分析基因表达的有效手段。将细胞DNA或RNA样品经琼脂糖凝胶电泳分离后转移到硝酸纤维素膜上,然后与放射性探针杂交,即Southern印迹法和Northern印迹法已被普遍采用,为了简化操作,也常使用(Dot Blot)点印迹法。利用上述技术进行基因或基因产物分析时,首先需要从细胞分离、纯化RNA和DNA。如果需  相似文献   

9.
应用微细胞检测基因产物的方法由于质粒和噬菌体等的DAN分子能在细胞内进行自我复制,以及DNA重组技术的普及,质粒DNA做为异源性DNA分子的载体,在基因工程中目前已被广泛应用。在克隆或分析真核生物或原核生物的多种不同基因时,常用检测基因表达来确定其存在。把含有某一目的基因的DNA片段和载体质粒的DNA进行重组,再通过重组DNA在受体细胞中的转录、翻译、  相似文献   

10.
肽核酸在分子生物学技术中的应用   总被引:1,自引:0,他引:1  
肽核酸(PNA)作为一种人工合成的核酸类似物,以中性的肽链酰胺2-氨基乙基甘氨酸键取代了DNA中的戊糖磷酸二酯键骨架,其余部分与DNA相同。PNA可通过Watson-Crick碱基配对的形式识别并结合DNA或RNA序列,形成稳定的双螺旋结构。与传统的DNA或RNA相比,PNA具有生物学稳定性高、杂交特异性强、杂合体的稳定性高和杂交速度快等明显优点,使PNA具有良好的物理化学性质和生物学特性,在检测目的核酸序列中单碱基突变、PCR基因分子诊断与检测、荧光原位杂交定量分析、基因芯片和生物传感器技术等调控水平和临床应用上有自己的特点。简要综述了近年来肽核酸在上述分子生物学技术中的运用以及应用前景的展望。  相似文献   

11.
结合SSH和cDNA芯片技术在植物研究中的应用   总被引:1,自引:0,他引:1  
抑制性差减杂交(Suppression Subtractive Hybridization,SSH)技术是分离差异表达基因的一种新方法。cDNA芯片也是近年来发展起来的一种新技术,它是指将大量的特定的寡核苷酸片段或基因片段作为探针,有规律地排列固定于硅片、玻片、塑料片等固相支持物上制成的芯片。本文主要介绍抑制差减杂交和cDNA芯片技术原理及其在植物研究中的应用。  相似文献   

12.
基因芯片技术及应用研究进展   总被引:19,自引:0,他引:19  
采用高速打印或光刻合成技术可在硅片、玻璃或尼龙膜上制造DNA微阵列。样品DNA/RNA通过PCR扩增、体外转录等技术掺入荧光标记分子,与微阵列杂交后通过荧光扫描仪器扫描及计算机分析即可获得样品中大量基因序列及表达的信息。该技术可应用于高通量基因表达平行分析、大规模基因发现及序列分析、基因多态性分析和基因组研究等 。  相似文献   

13.
生物信息学在基因芯片中的应用   总被引:13,自引:1,他引:13  
生物信息学和基因芯片是生命科学研究领域中的两种新方法和新技术,生物信息学与基因芯片密切相关,生物信息学促进了基因芯片的研究与应用,而基因芯片则丰富了生物信息学的研究内容。本论文探讨生物信息学在基因芯片中的应用,将生物信息学方法运用到高密度基因芯片设计和芯片实验数据管理及分析。从信息学的角度提出基因芯片设计准则,提出寡核苷酸探针的优化设计方法,将该方法运用于再测序型芯片和基因表达型芯片的设计,在此基础上研制出高密度基因芯片设计软件系统和实验结果分析系统。  相似文献   

14.
DNA芯片技术是近年发展起来的又一新分子生物学研究工具,可使研究者得以自动化、快速、平行地对大量的生物信息加以分析,在基因组水平上研究基因表达。这种技术为从基因组水平研究基因表达水平与生理反应及生理状况的改变之间的关系提供了强有力的手段。通过比较不同营养水平或不同环境条件下的组织细胞基因达到表达谱差异,可以从基因组水平阐明各种营养成分或环境因素对动物机体的基因表达的影响,从而进一步揭示营养生理的机制和环境对动物影响的机理。DNA芯片技术为分子营养的研究开辟了一条崭新的道路,在从DNA芯片的原理、种类、实验设计、统计方法及在分子营养上的应用作一综述。  相似文献   

15.
DNA芯片技术与基因表达研究   总被引:11,自引:1,他引:11  
随着基因组计划的顺利实施,大量的生物信息被解析,基因表达及基因功能的研究将成为生命科学研究的热点。DNA世片技术是近年来出现的分子生物学与微电子技术相结合的最新DNA分析检测技术。该技术将在生命科学与信息科学之间架起一道桥梁,因而成为后基因组时代基因功能分析撮重要的技术之一。目前DNA芯片技术已在基因保得到广泛的应用。  相似文献   

16.
乳酸菌基因芯片应用研究进展   总被引:1,自引:0,他引:1  
基因芯片技术是上世纪90年代兴起的一种对成百上千甚至上万个基因同时进行检测的新技术,具有高通量、并行化的特点,广泛应用于基因表达谱测定、基因功能预测、基因突变检测和多态性分析等方面。多种乳酸菌基因组全序列以及其大量EST、16S rDNA、16S-23S基因间区和功能基因序列测定的完成,有力地推动了基因芯片技术在乳酸菌研究中的应用。介绍了基因芯片的基本原理及乳酸菌基因芯片在基因表达、种属鉴定等研究中的应用进展,以期更好地利用和开发乳酸菌基因芯片。  相似文献   

17.
基因芯片技术与基因表达谱研究   总被引:4,自引:0,他引:4  
基因芯片技术是近年来出现的分子生物学与微电子技术相结合的最新DNA分析检测技术,该技术将成为信息科学与生命科学之间的联系纽带,为后基因组时代基因功能的分析提供一种最重要的技术手段,目前基因芯片技术已在基因表达谱等研究中得到广泛应用。  相似文献   

18.
We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the largest member of the herpesvirus family, human cytomegalovirus (HCMV). In this study, an HCMV chip was fabricated and used to characterize the temporal class of viral gene expression. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of oligonucleotides on glass for ORFs in the HCMV genome. Viral gene expression was monitored by hybridization to the oligonucleotide microarrays with fluorescently labelled cDNAs prepared from mock-infected or infected human foreskin fibroblast cells. By using cycloheximide and ganciclovir to block de novo viral protein synthesis and viral DNA replication, respectively, the kinetic classes of array elements were classified. The expression profiles of known ORFs and many previously uncharacterized ORFs provided a temporal map of immediate-early (alpha), early (beta), early-late (gamma1), and late (gamma2) genes in the entire genome of HCMV. Sequence compositional analysis of the 5' noncoding DNA sequences of the temporal classes, performed by using algorithms that automatically search for defined and recurring motifs in unaligned sequences, indicated the presence of potential regulatory motifs for beta, gamma1, and gamma2 genes. In summary, these fabricated microarrays of viral DNA allow rapid and parallel analysis of gene expression at the whole viral genome level. The viral chip approach coupled with global biochemical and genetic strategies should greatly speed the functional analysis of established as well as newly discovered large viral genomes.  相似文献   

19.
基因芯片又称DNA微阵列,分为cDNA微阵列和寡聚核苷酸微阵列。DNA微阵列技术是探索基因组功能的一种强有力工具。扼要介绍基因芯片、表达谱芯片技术和原理,以及基因芯片技术在肿瘤基因组学中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号