首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The loop between transmembrane regions S5 and S6 (P-region) of voltage-gated K+ channels has been proposed to form the ion-conducting pore, and the internal part of this segment is reported to be responsible for ion permeation and internal tetraethylammonium (TEA) binding. The two T-cell K+ channels, Kv3.1 and Kv1.3, with widely divergent pore properties, differ by a single residue in this internal P-region, leucine 401 in Kv3.1 corresponding to valine 398 in Kv1.3. The L401V mutation in Kv3.1 was created with the anticipation that the mutant channel would exhibit Kv1.3-like deep-pore properties. Surprisingly, this mutation did not alter single channel conductance and only moderately enhanced internal TEA sensitivity, indicating that residues outside the P-region influence these properties. Our search for additional residues was guided by the model of Durell and Guy, which predicted that the C-terminal end of S6 formed part of the K+ conduction pathway. In this segment, the two channels diverge at only one position, Kv3.1 containing M430 in place of leucine in Kv1.3. The M430L mutant of Kv3.1 exhibited permeant ion- and voltage-dependent flickery outward single channel currents, with no obvious changes in other pore properties. Modification of one or more ion-binding sites located in the electric field and possibly within the channel pore could give rise to this type of channel flicker.  相似文献   

2.
Energetics of Shaker K channels block by inactivation peptides   总被引:5,自引:1,他引:4       下载免费PDF全文
A synthetic peptide of the NH2-terminal inactivation domain of the ShB channel blocks Shaker channels which have an NH2-terminal deletion and mimics many of the characteristics of the intramolecular inactivation reaction. To investigate the role of electrostatic interactions in both peptide block and the inactivation process we measured the kinetics of block of macroscopic currents recorded from the intact ShB channel, and from ShB delta 6-46 channels in the presence of peptides, at different ionic strengths. The rate of inactivation and the association rate constants (k(on)) for the ShB peptides decreased with increasing ionic strength. k(on) for a more positively charged peptide was more steeply dependent on ionic strength consistent with a simple electrostatic mechanism of enhanced diffusion. This suggests that a rate limiting step in the inactivation process is the diffusion of the NH2-terminal domain towards the pore. The dissociation rates (k(off)) were insensitive to ionic strength. The temperature dependence of k(on) for the ShB peptide was very high, (Q10 = 5.0 +/- 0.58), whereas k(off) was relatively temperature insensitive (Q10 approximately 1.1). The results suggest that at higher temperatures the proportion of time either the peptide or channel spends in the correct conformation for binding is increased. There were two components to the time course of recovery from block by the ShB peptide, indicating two distinct blocked states, one of which has similar kinetics and dependence on external K+ concentration as the inactivated state of ShB. The other is voltage- dependent and at -120 mV is very unstable. Increasing the net charge on the peptide did not increase sensitivity to knock-off by external K+. We propose that the free peptide, having fewer constraints than the tethered NH2-terminal domain binds to a similar site on the channel in at least two different conformations.  相似文献   

3.
A 20 amino acid synthetic peptide, corresponding to the amino-terminal region of the Shaker B (ShB) K+ channel and responsible for its fast inactivation, can block large conductance Ca(2+)-dependent K+ channels from rat brain and muscle. The ShB inactivation peptide produces two kinetically distinct blocking events in these channels. At lower concentrations, it produces short blocks, and at higher concentrations long-lived blocks also appear. The L7E mutant peptide produces only infrequent short blocks (no long-lived blocks) at a much higher concentration. Internal tetraethylammonium competes with the peptide for the short block, which is also relieved by K+ influx. These results suggest that the peptide induces the short block by binding within the pore of Ca(2+)-dependent K+ channels. The long block is not affected by increased K+ influx, indicating that the binding site mediating this block may be different from that involved in the short block. The short block of Ca(2+)-dependent K+ channels and the inactivation of Shaker exhibit similar characteristics with respect to blocking affinity and open pore blockade. This suggests a conserved binding region for the peptide in the pore regions of these very different classes of K+ channel.  相似文献   

4.
K+ and Rb+ conductances (GK+ and GRb+) were investigated in two delayed rectifier K+ channels (Kv2.1 and Kv3.1) cloned from rat brain and a chimera (CHM) of the two channels formed by replacing the putative pore region of Kv2.1 with that of Kv3.1. CHM displayed ion conduction properties which resembled Kv3.1. In CHM, GK+ was three times greater than that of Kv2.1 and GRb+/GK+ = 0.3 (compared with 1.5 and 0.7, respectively, in Kv2.1 and Kv3.1). A point mutation in CHM L374V, which restored 374 to its Kv2.1 identity, switched the K+/Rb+ conductance profiles so that GK+ was reduced fourfold, GRb+ was increased twofold, and GRb+/GK+ = 2.8. Quantitative restoration of the Kv2.1 K+/Rb+ profiles, however, required simultaneous point mutations at three nonadjacent residues suggesting the possibility of interactions between residues within the pore. The importance of leucine at position 374 was verified when reciprocal changes in K+/Rb+ conductances were produced by the mutation of V374L in Kv2.1 (GK+ was increased threefold, GRb+ was decreased threefold, and GRb+/GK+ = 0.2). We conclude that position 374 is responsible for differences in GK+ and GRb+ between Kv2.1 and Kv3.1 and, given its location near residues critical for block by internal tetraethylammonium, may be part of a cation binding site deep within the pore.  相似文献   

5.
Membrane proteins that respond to changes in transmembrane voltage are critical in regulating the function of living cells. The voltage-sensing domains (VSDs) of voltage-gated ion channels are extensively studied to elucidate voltage-sensing mechanisms, and yet many aspects of their structure-function relationship remain elusive. Here, we transplanted homologous amino acid motifs from the tetrameric voltage-activated potassium channel Kv3.1 to the monomeric VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) to explore which portions of Kv3.1 subunits depend on the tetrameric structure of Kv channels and which properties of Kv3.1 can be transferred to the monomeric Ci-VSP scaffold. By attaching fluorescent proteins to these chimeric VSDs, we obtained an optical readout to establish membrane trafficking and kinetics of voltage-dependent structural rearrangements. We found that motifs extending from 10 to roughly 100 amino acids can be readily transplanted from Kv3.1 into Ci-VSP to form engineered VSDs that efficiently incorporate into the plasma membrane and sense voltage. Some of the functional features of these engineered VSDs are reminiscent of Kv3.1 channels, indicating that these properties do not require interactions between Kv subunits or between the voltage sensing and the pore domains of Kv channels.  相似文献   

6.
In spite of a generally well-conserved outer vestibule and pore structure, there is considerable diversity in the pharmacology of K channels. We have investigated the role of specific outer vestibule charged residues in the pharmacology of K channels using tetraethylammonium (TEA) and a trivalent TEA analog, gallamine. Similar to Shaker K channels, gallamine block of Kv3.1 channels was more sensitive to solution ionic strength than was TEA block, a result consistent with a contribution from an electrostatic potential near the blocking site. In contrast, TEA block of another type of K channel (Kv2.1) was insensitive to solution ionic strength and these channels were resistant to block by gallamine. Neutralizing either of two lysine residues in the outer vestibule of these Kv2.1 channels conferred ionic strength sensitivity to TEA block. Kv2.1 channels with both lysines neutralized were sensitive to block by gallamine, and the ionic strength dependence of this block was greater than that for TEA. These results demonstrate that Kv3.1 (like Shaker) channels contain negatively charged residues in the outer vestibule of the pore that influence quaternary ammonium pharmacology. The presence of specific lysine residues in wild-type Kv2.1 channels produces an outer vestibule with little or no net charge, with important consequences for quaternary ammonium block. Neutralizing these key lysines results in a negatively charged vestibule with pharmacological properties approaching those of other types of K channels.  相似文献   

7.
Voltage-gated K channels are regulated by extracellular divalent cations such as Mg(2+) and Sr(2+), either by screening of fixed negative surface charges, by binding directly or close to the voltage sensor, or by binding to the pore. Different K channels display different sensitivity to divalent cations. For instance, 20 mM MgCl(2) shifts the conductance versus voltage curve, G(V), of the Kv1-type Shaker channel with 14 mV, while the G(V) of Kv2.1 is shifted only with 7 mV. This shift difference is paralleled with different working ranges. Kv1-type channels open at approximately -20 mV and Kv2.1 channel open at approximately +5 mV. The aim of this study was to identify critical residues for this Mg(2+)-induced G(V) shift by introducing Kv2.1 channel residues in the Shaker K channel. The K channels were expressed in Xenopus laevis oocytes and studied with the two-electrode voltage-clamp technique. We found that three neutral-to-positive amino-acid residue exchanges in the extracellular loops connecting transmembrane segments S5 and S6 transferred the Mg(2+)-shifting properties. The contributions of the three residues were additive, and thus independent of each other, with the contributions in the order 425 > 419 > 451. Charging 425 and 419 not only affect the Mg(2+)-induced G(V) shift with 5-6 mV, but also shifts the G(V) with 17 mV. Thus, a few strategically placed surface charges clearly modulate the channel's working range. Residue 425, located at some distance away from the voltage sensor, was shown to electrostatically affect residue K427, which in turn affects the voltage sensor S4-thus, an electrostatic domino effect.  相似文献   

8.
Since Ca2+ is a major competitor of protons for the modulation of high voltage-activated Ca2+ channels, we have studied the modulation by extracellular Ca2+ of the effects of proton on the T-type Ca2+ channel alpha1G (CaV3.1) expressed in HEK293 cells. At 2 mM extracellular Ca2+ concentration, extracellular acidification in the pH range from 9.1 to 6.2 induced a positive shift of the activation curve and increased its slope factor. Both effects were significantly reduced if the concentration was increased to 20 mM or enhanced in the absence of Ca2+. Extracellular protons shifted the voltage dependence of the time constant of activation and decreased its voltage sensitivity, which excludes a voltage-dependent open pore block by protons as the mechanism modifying the activation curve. Changes in the extracellular pH altered the voltage dependence of steady-state inactivation and deactivation kinetics in a Ca2+-dependent manner, but these effects were not strictly correlated with those on activation. Model simulations suggest that protons interact with intermediate closed states in the activation pathway, decreasing the gating charge and shifting the equilibrium between these states to less negative potentials, with these effects being inhibited by extracellular Ca2+. Extracellular acidification also induced an open pore block and a shift in selectivity toward monovalent cations, which were both modulated by extracellular Ca2+ and Na+. Mutation of the EEDD pore locus altered the Ca2+-dependent proton effects on channel selectivity and permeation. We conclude that Ca2+ modulates T-type channel function by competing with protons for binding to surface charges, by counteracting a proton-induced modification of channel activation and by competing with protons for binding to the selectivity filter of the channel.  相似文献   

9.
The best-known Shaker allele of Drosophila with a novel gating phenotype, Sh(5), differs from the wild-type potassium channel by a point mutation in the fifth membrane-spanning segment (S5) (Gautam, M., and M.A. Tanouye. 1990. Neuron. 5:67-73; Lichtinghagen, R., M. Stocker, R. Wittka, G. Boheim, W. Stühmer, A. Ferrus, and O. Pongs. 1990. EMBO [Eur. Mol. Biol. Organ.] J. 9:4399-4407) and causes a decrease in the apparent voltage dependence of opening. A kinetic study of Sh(5) revealed that changes in the deactivation rate could account for the altered gating behavior (Zagotta, W.N., and R.W. Aldrich. 1990. J. Neurosci. 10:1799-1810), but the presence of intact fast inactivation precluded observation of the closing kinetics and steady state activation. We studied the Sh(5) mutation (F401I) in ShB channels in which fast N-type inactivation was removed, directly confirming this conclusion. Replacement of other phenylalanines in S5 did not result in substantial alterations in voltage-dependent gating. At position 401, valine and alanine substitutions, like F401I, produce currents with decreased apparent voltage dependence of the open probability and of the deactivation rates, as well as accelerated kinetics of opening and closing. A leucine residue is the exception among aliphatic mutants, with the F401L channels having a steep voltage dependence of opening and slow closing kinetics. The analysis of sigmoidal delay in channel opening, and of gating current kinetics, indicates that wild-type and F401L mutant channels possess a form of cooperativity in the gating mechanism that the F401A channels lack. The wild-type and F401L channels' entering the open state gives rise to slow decay of the OFF gating current. In F401A, rapid gating charge return persists after channels open, confirming that this mutation disrupts stabilization of the open state. We present a kinetic model that can account for these properties by postulating that the four subunits independently undergo two sequential voltage-sensitive transitions each, followed by a final concerted opening step. These channels differ primarily in the final concerted transition, which is biased in favor of the open state in F401L and the wild type, and in the opposite direction in F401A. These results are consistent with an activation scheme whereby bulky aromatic or aliphatic side chains at position 401 in S5 cooperatively stabilize the open state, possibly by interacting with residues in other helices.  相似文献   

10.
The time course of inactivation of voltage‐activated potassium (Kv) channels is an important determinant of the firing rate of neurons. In many Kv channels highly unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can induce fast inactivation. We found that these lipids interact with hydrophobic residues lining the inner cavity of the pore. We analysed the effects of these lipids on Kv1.1 current kinetics and their competition with intracellular tetraethylammonium and Kvβ subunits. Our data suggest that inactivation most likely represents occlusion of the permeation pathway, similar to drugs that produce ‘open‐channel block’. Open‐channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 channels in different regions of the brain can profoundly alter the pharmacology of Kv1.x channels. Our findings provide a mechanistic understanding of lipid‐induced inactivation and establish RNA editing as a mechanism to induce drug and lipid resistance in Kv channels.  相似文献   

11.
Nifedipine can block K(+) currents through Kv1.5 channels in an open-channel manner (32). Replacement of internal and external K(+) with equimolar Rb(+) or Cs(+) reduced the potency of nifedipine block of Kv1.5 from an IC(50) of 7.3 microM (K(+)) to 16.0 microM (Rb(+)) and 26.9 microM (Cs(+)). The voltage dependence of block was unaffected, and a single binding site block model was used to describe block for all three ions. By varying ion species at the intra- and extracellular mouth of the channel and by using a nonconducting W472F-Kv1.5 mutant, we demonstrated that block was conditioned by the ion permeating the pore and, to a lesser extent, by the extracellular ion species alone. In Kv1.5, the outer pore mutations R487V and R487Y reduced nifedipine potency close to that of Kv4.2 and other Kv channels with an equivalent valine. Although changing this residue can affect C-type inactivation of Kv channels, the normalized reduction and time course of currents blocked by nifedipine in 5, 135, and 300 mM extracellular K(+) concentration was the same. Similarly, a mean recovery time constant from nifedipine block of 316 ms was unchanged (332 ms) after 5-s prepulses to allow C-type inactivation. This is consistent with the conclusion that nifedipine block and C-type inactivation in the Kv1.5 channel can coexist but are mediated by distinct mechanisms coordinated by outer pore conformation.  相似文献   

12.
Recent molecular dynamic simulations and electrostatic calculations suggested that the external TEA binding site in K+ channels is outside the membrane electric field. However, it has been known for some time that external TEA block of Shaker K+ channels is voltage dependent. To reconcile these two results, we reexamined the voltage dependence of block of Shaker K+ channels by external TEA. We found that the voltage dependence of TEA block all but disappeared in solutions in which K+ ions were replaced by Rb+. These and other results with various concentrations of internal K+ and Rb+ ions suggest that the external TEA binding site is not within the membrane electric field and that the voltage dependence of TEA block in K+ solutions arises through a coupling with the movement of K+ ions through part of the membrane electric field. Our results suggest that external TEA block is coupled to two opposing voltage-dependent movements of K+ ions in the pore: (a) an inward shift of the average position of ions in the selectivity filter equivalent to a single ion moving approximately 37% into the pore from the external surface; and (b) a movement of internal K+ ions into a vestibule binding site located approximately 13% into the membrane electric field measured from the internal surface. The minimal voltage dependence of external TEA block in Rb+ solutions results from a minimal occupancy of the vestibule site by Rb+ ions and because the energy profile of the selectivity filter favors a more inward distribution of Rb+ occupancy.  相似文献   

13.
The single-channel kinetics of extracellular Mg(2+) block was used to probe K(+) binding sites in the permeation pathway of rat recombinant NR1/NR2B NMDA receptor channels. K(+) binds to three sites: two that are external and one that is internal to the site of Mg(2+) block. The internal site is approximately 0.84 through the electric field from the extracellular surface. The equilibrium dissociation constant for this site for K(+) is 304 mM at 0 mV and with Mg(2+) in the pore. The occupancy of any one of the three sites by K(+) effectively prevents the association of extracellular Mg(2+). Occupancy of the internal site also prevents Mg(2+) permeation and increases (by approximately sevenfold) the rate constant for Mg(2+) dissociation back to the extracellular solution. Under physiological intracellular ionic conditions and at -60 mV, there is approximately 1,400-fold apparent decrease in the affinity of the channel for extracellular Mg(2+) and approximately 2-fold enhancement of the apparent voltage dependence of Mg(2+) block caused by the voltage dependence of K(+) occupancy of the external and internal sites.  相似文献   

14.
We previously concluded that the Kv2.1 K(+) channel inactivates preferentially from partially activated closed states. We report here that the Kv3.1 channel also exhibits two key features of this inactivation mechanism: a U-shaped voltage dependence measured at 10 s and stronger inactivation with repetitive pulses than with a single long depolarization. More surprisingly, slow inactivation of the Kv1 Shaker K(+) channel (Shaker B Delta 6--46) also has a U-shaped voltage dependence for 10-s depolarizations. The time and voltage dependence of recovery from inactivation reveals two distinct components for Shaker. Strong depolarizations favor inactivation that is reduced by K(o)(+) or by partial block by TEA(o), as previously reported for slow inactivation of Shaker. However, depolarizations near 0 mV favor inactivation that recovers rapidly, with strong voltage dependence (as for Kv2.1 and 3.1). The fraction of channels that recover rapidly is increased in TEA(o) or high K(o)(+). We introduce the term U-type inactivation for the mechanism that is dominant in Kv2.1 and Kv3.1. U-type inactivation also makes a major but previously unrecognized contribution to slow inactivation of Shaker.  相似文献   

15.
The mechanism of block of voltage-dependent Na+ channels by extracellular divalent cations was investigated in a quantitative comparison of two distinct Na+ channel subtypes incorporated into planar bilayers in the presence of batrachotoxin. External Ca2+ and other divalent cations induced a fast voltage-dependent block observed as a reduction in unitary current for tetrodotoxin-sensitive Na+ channels of rat skeletal muscle and tetrodotoxin-insensitive Na+ channels of canine heart ventricular muscle. Using a simple model of voltage-dependent binding to a single site, these two distinct Na+ channel subtypes exhibited virtually the same affinity and voltage dependence for fast block by Ca2+ and a number of other divalent cations. This group of divalent cations exhibited an affinity sequence of Co congruent to Ni greater than Mn greater than Ca greater than Mg greater than Sr greater than Ba, following an inverse correlation between binding affinity and ionic radius. The voltage dependence of fast Ca2+ block was essentially independent of CaCl2 concentration; however, at constant voltage the Ca2+ concentration dependence of fast block deviated from a Langmuir isotherm in the manner expected for an effect of negative surface charge. Titration curves for fast Ca2+ block were fit to a simplified model based on a single Ca2+ binding site and the Gouy-Chapman theory of surface charge. This model gave similar estimates of negative surface charge density in the vicinity of the Ca2+ blocking site for muscle and heart Na+ channels. In contrast to other divalent cations listed above, Cd2+ and Zn2+ are more potent blockers of heart Na+ channels than muscle Na+ channels. Cd2+ induced a fast, voltage-dependent block in both Na+ channel subtypes with a 46-fold higher affinity at 0 mV for heart (KB = 0.37 mM) vs. muscle (KB = 17 mM). Zn2+ induced a fast, voltage-dependent block of muscle Na+ channels with low affinity (KB = 7.5 mM at 0 mV). In contrast, micromolar Zn2+ induced brief closures of heart Na+ channels that were resolved as discrete substate events at the single-channel level with an apparent blocking affinity of KB = 0.067 mM at 0 mV, or 110-fold higher affinity for Zn2+ compared with the muscle channel. High-affinity block of the heart channel by Cd2+ and Zn2+ exhibited approximately the same voltage dependence (e-fold per 60 mV) as low affinity block of the muscle subtype (e-fold per 54 mV), suggesting that the block occurs at structurally analogous sites in the two Na+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.  相似文献   

17.
In this study, we analysed the inhibitory potency, blocking characteristics and putative binding sites of three structurally distinct Kv1.5 channel inhibitors on cloned human Kv1.5 channels. Obtained IC(50) values for S9947, MSD-D and ICAGEN-4 were 0.7 microM, 0.5 microM, and 1.6 microM, respectively. The Hill-coefficients were close to 1 for S9947 and approximately 2 for MSD-D and ICAGEN-4. All three compounds inhibited Kv1.5 channels preferentially in the open state, with Kv1.5 block displaying positive frequency dependence, but no clear voltage and potassium dependence. In contrast to slow on- and off-rates of apparent binding of MSD-D and ICAGEN-4, S9947 had fast on- and off-rates resulting in faster adaptation to changes in pulse frequency. Utilizing Alanine-scanning and in silico modeling we suggest binding of the compounds to the central cavity with crucial residues Ile508 and Val512 in the S6-segment. Residue Thr480 located at the base of the selectivity filter is important for ICAGEN-4 and S9947 inhibition, but less so for MSD-D binding. Our docking models suggest that the innermost potassium ion in the selectivity filter may form a tertiary complex with oxygens of S9947 and ICAGEN-4 and residue Thr480. This binding component is absent in the MSD-D block. As S9947 and ICAGEN-4 show faster block with proceeding channel openings, formation of this tertiary complex may increasingly stabilise binding of S9947 and ICAGEN-4, thereby explaining open channel block kinetics of these compounds.  相似文献   

18.
N-Glycosylation is a cotranslational and post-translational process of proteins that may influence protein folding, maturation, stability, trafficking, and consequently cell surface expression of functional channels. Here we have characterized two consensus N-glycosylation sequences of a voltage-gated K+ channel (Kv3.1). Glycosylation of Kv3.1 protein from rat brain and infected Sf9 cells was demonstrated by an electrophoretic mobility shift assay. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced a much faster-migrating Kv3.1 immunoband than that of undigested brain membranes. To demonstrate N-glycosylation of wild-type Kv3.1 in Sf9 cells, cells were treated with tunicamycin. Also, partially purified proteins were digested with either PNGase F or endoglycosidase H. Attachment of simple-type oligosaccharides at positions 220 and 229 was directly shown by single (N229Q and N220Q) and double (N220Q/N229Q) Kv3.1 mutants. Functional measurements and membrane fractionation of infected Sf9 cells showed that unglycosylated Kv3.1s were transported to the plasma membrane. Unitary conductance of N220Q/N229Q was similar to that of the wild-type Kv3.1. However, whole cell currents of N220Q/N229Q channels had slower activation rates, and a slight positive shift in voltage dependence compared to wild-type Kv3.1. The voltage dependence of channel activation for N229Q and N220Q was much like that for N220Q/N229Q. These results demonstrate that the S1-S2 linker is topologically extracellular, and that N-glycosylation influences the opening of the voltage-dependent gate of Kv3.1. We suggest that occupancy of the sites is critical for folding and maturation of the functional Kv3.1 at the cell surface.  相似文献   

19.
We present in this work a structural model of the open IKCa (KCa3.1) channel derived by homology modeling from the MthK channel structure, and used this model to compute the transmembrane potential profile along the channel pore. This analysis showed that the selectivity filter and the region extending from the channel inner cavity to the internal medium should respectively account for 81% and 16% of the transmembrane potential difference. We found however that the voltage dependence of the IKCa block by the quaternary ammonium ion TBA applied internally is compatible with an apparent electrical distance delta of 0.49 +/- 0.02 (n = 6) for negative potentials. To reconcile this observation with the electrostatic potential profile predicted for the channel pore, we modeled the IKCa block by TBA assuming that the voltage dependence of the block is governed by both the difference in potential between the channel cavity and the internal medium, and the potential profile along the selectivity filter region through an effect on the filter ion occupancy states. The resulting model predicts that delta should be voltage dependent, being larger at negative than positive potentials. The model also indicates that raising the internal K+ concentration should decrease the value of delta measured at negative potentials independently of the external K+ concentration, whereas raising the external K+ concentration should minimally affect delta for concentrations >50 mM. All these predictions are born out by our current experimental results. Finally, we found that the substitutions V275C and V275A increased the voltage sensitivity of the TBA block, suggesting that TBA could move further into the pore, thus leading to stronger interactions between TBA and the ions in the selectivity filter. Globally, these results support a model whereby the voltage dependence of the TBA block in IKCa is mainly governed by the voltage dependence of the ion occupancy states of the selectivity filter.  相似文献   

20.
The pore properties and the reciprocal interactions between permeant ions and the gating of KCNQ channels are poorly understood. Here we used external barium to investigate the permeation characteristics of homomeric KCNQ1 channels. We assessed the Ba(2+) binding kinetics and the concentration and voltage dependence of Ba(2+) steady-state block. Our results indicate that extracellular Ba(2+) exerts a series of complex effects, including a voltage-dependent pore blockade as well as unique gating alterations. External barium interacts with the permeation pathway of KCNQ1 at two discrete and nonsequential sites. (a) A slow deep Ba(2+) site that occludes the channel pore and could be simulated by a model of voltage-dependent block. (b) A fast superficial Ba(2+) site that barely contributes to channel block and mostly affects channel gating by shifting rightward the voltage dependence of activation, slowing activation, speeding up deactivation kinetics, and inhibiting channel inactivation. A model of voltage-dependent block cannot predict the complex impact of Ba(2+) on channel gating in low external K(+) solutions. Ba(2+) binding to this superficial site likely modifies the gating transitions states of KCNQ1. Both sites appear to reside in the permeation pathway as high external K(+) attenuates Ba(2+) inhibition of channel conductance and abolishes its impact on channel gating. Our data suggest that despite the high degree of homology of the pore region among the various K(+) channels, KCNQ1 channels display significant structural and functional uniqueness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号