首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerase chain reaction (PCR) amplification and gene probe detection of regions of two genes, lacZ and lamB, were tested for their abilities to detect coliform bacteria. Amplification of a segment of the coding region of Escherichia coli lacZ by using a PCR primer annealing temperature of 50 degrees C detected E. coli and other coliform bacteria (including Shigella spp.) but not Salmonella spp. and noncoliform bacteria. Amplification of a region of E. coli lamB by using a primer annealing temperature of 50 degrees C selectively detected E. coli and Salmonella and Shigella spp. PCR amplification and radiolabeled gene probes detected as little as 1 to 10 fg of genomic E. coli DNA and as a few as 1 to 5 viable E. coli cells in 100 ml of water. PCR amplification of lacZ and lamB provides a basis for a method to detect indicators of fecal contamination of water, and amplification of lamB in particular permits detection of E. coli and enteric pathogens (Salmonella and Shigella spp.) with the necessary specificity and sensitivity for monitoring the bacteriological quality of water so as to ensure the safety of water supplies.  相似文献   

2.
Polymerase chain reaction (PCR) amplification and gene probe detection of regions of two genes, lacZ and lamB, were tested for their abilities to detect coliform bacteria. Amplification of a segment of the coding region of Escherichia coli lacZ by using a PCR primer annealing temperature of 50 degrees C detected E. coli and other coliform bacteria (including Shigella spp.) but not Salmonella spp. and noncoliform bacteria. Amplification of a region of E. coli lamB by using a primer annealing temperature of 50 degrees C selectively detected E. coli and Salmonella and Shigella spp. PCR amplification and radiolabeled gene probes detected as little as 1 to 10 fg of genomic E. coli DNA and as a few as 1 to 5 viable E. coli cells in 100 ml of water. PCR amplification of lacZ and lamB provides a basis for a method to detect indicators of fecal contamination of water, and amplification of lamB in particular permits detection of E. coli and enteric pathogens (Salmonella and Shigella spp.) with the necessary specificity and sensitivity for monitoring the bacteriological quality of water so as to ensure the safety of water supplies.  相似文献   

3.
基因芯片技术检测3种食源性致病微生物方法的建立   总被引:5,自引:0,他引:5  
建立一种运用多重PCR和基因芯片技术检测和鉴定志贺氏菌、沙门氏菌、大肠杆菌O157的方法, 为3种食源性致病菌的快速检测和鉴定提供了准确、快速、灵敏的方法。分别选取编码志贺氏菌侵袭性质粒抗原H基因(ipaH)、沙门氏菌肠毒素(stn)基因和致泻性大肠杆菌O157志贺样毒素(slt)基因设计引物和探针, 进行三重PCR扩增, 产物与含特异性探针的芯片杂交。对7种细菌共26株菌进行芯片检测, 仅3种菌得到阳性扩增结果, 证明此方法具有很高的特异性。3种致病菌基因组DNA和细菌纯培养物的检测灵敏度约为8 pg。对模拟食品样品进行直接检测, 结果与常规细菌学培养结果一致, 检测限为50 CFU/mL。结果表明:所建立的基因芯片检测方法特异性好, 灵敏度高, 为食源性致病菌的检测提供了理想手段, 有良好的应用前景。  相似文献   

4.
A method was developed for the detection of the fecal coliform bacterium Escherichia coli, using the polymerase chain reaction and gene probes, based on amplifying regions of the uid gene that code for beta-glucuronidase, expression of which forms the basis for fecal coliform detection by the commercially available Colilert method. Amplification and gene probe detection of four different regions of uid specifically detected E. coli and Shigella species, including beta-glucuronidase-negative strains of E. coli; no amplification was observed for other coliform and nonenteric bacteria.  相似文献   

5.
A method was developed for the detection of the fecal coliform bacterium Escherichia coli, using the polymerase chain reaction and gene probes, based on amplifying regions of the uid gene that code for beta-glucuronidase, expression of which forms the basis for fecal coliform detection by the commercially available Colilert method. Amplification and gene probe detection of four different regions of uid specifically detected E. coli and Shigella species, including beta-glucuronidase-negative strains of E. coli; no amplification was observed for other coliform and nonenteric bacteria.  相似文献   

6.
I-CeuI fragments of four Shigella species were analyzed to investigate their taxonomic distance from Escherichia coli and to collect substantiated evidence of their genetic relatedness because their ribosomal RNA sequences and similarity values of their chromosomal DNA/DNA hybridization had proved their taxonomic identity. I-CeuI digestion of genomic DNAs yielded seven fragments in every species, indicating that all the Shigella species contained seven sets of ribosome RNA operons. To determine the fragment identities, seven genes were selected from each I-CeuI fragment of E. coli strain K-12 and used as hybridization probes. Among the four Shigella species, S. boydii and S. sonnei showed hybridization patterns similar to those observed for E. coli strains; each gene probe hybridized to the I-CeuI fragments with sizes similar to that of the corresponding E. coli fragment. In contrast, S. dysenteriae and S. flexneri showed distinct patterns; rcsF and rbsR genes that located on different I-CeuI fragments in E. coli, fragments D and E, were found to co-locate on a fragment. Further analysis using an additional three genes that located on fragment D in K-12 revealed that some chromosome rearrangements involving the fragments corresponding to fragments D and E of K-12 took place in S. dysenteriae and S. flexneri.  相似文献   

7.
Strains of Shigella dysenteriae, Shigella flexneri and Shigella boydii express lipopolysaccharides, that enable the serotyping of strains based on their antigenic structures. Certain strains of S. dysenteriae, S. flexneri and S. boydii are known to share epitopes with strains of Escherichia coli ; however, the lipopolysaccharide profiles of the cross-reacting organisms have not been compared by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) lipopolysaccharides profiling. In the present study, type strains of these bacteria were examined using SDS-PAGE/silver staining to compare their respective lipopolysaccharide profiles. Strains of S. dysenteriae, S. boydii and S. flexneri all expressed long-chain lipopolysaccharide, with distinct profile patterns. The majority of strains of Shigella spp., known to cross-react with strains of E. coli , had lipopolysaccharide profiles quite distinct from the respective strain of E. coli . It was concluded that while cross-reacting strains of Shigella spp. and E. coli may express shared lipopolysaccharide epitopes, their lipopolysaccharide structures are not identical.  相似文献   

8.
A set of PCR primers targeting 16S rRNA gene sequences was designed, and PCR parameters were optimized to develop a robust and reliable protocol for selective amplification of Escherichia coli 16S rRNA genes. The method was capable of discriminating E. coli from other enteric bacteria, including its closest relative, Shigella. Selective amplification of E. coli occurred only when the annealing temperature in the PCR was elevated to 72 degrees C, which is 10 degrees C higher than the optimum for the primers. Sensitivity was retained by modifying the length of steps in the PCR, by increasing the number of cycles, and most importantly by optimizing the MgCl(2) concentration. The PCR protocol developed can be completed in less then 2 h and, by using Southern hybridization, has a detection limit of ca. 10 genomic equivalents per reaction. The method was demonstrated to be effective for detecting E. coli DNA in heterogeneous DNA samples, such as those extracted from soil.  相似文献   

9.
The enzyme glutamate decarboxylase (GAD) is prevalent in Escherichia coli but few strains in the various pathogenic E. coli groups have been tested for GAD. Using PCR primers that amplify a 670-bp segment from the gadA and gadB genes encoding GAD, we examined the distribution of the gadAB genes among enteric bacteria. Analysis of 173 pathogenic E. coli strains, including 125 enterohemorrhagic E. coli isolates of the O157:H7 serotype and its phenotypic variants and 48 isolates of enteropathogenic E. coli, enterotoxigenic E. coli, enteroinvasive E. coli, and other Shiga toxin-producing E. coli (STEC) serotypes, showed that gadAB genes were present in all these strains. Among the 22 non-E. coli isolates tested, only the 6 Shigella spp. carried gadAB. Analysis of naturally contaminated water and food samples using a gadAB-specific DNA probe that was labeled with digoxigenin showed that a gadAB-based assay is as reliable as standard methods that enumerate E. coli organisms on the basis of lactose fermentation. The presence of few E. coli cells initially seeded into produce rinsates could be detected by PCR to gadA/B genes after overnight enrichment. A multiplex PCR assay using the gadAB primers in combination with primers to Shiga toxin (Stx) genes stx(1) and stx(2) was effective in detecting STEC from the enrichment medium after seeding produce rinsate samples with as few as 2 CFU. The gadAB primers may be multiplexed with primers to other trait virulence markers to specifically identify other pathogenic E. coli groups.  相似文献   

10.
Oligonucleotide primers were designed for the PCR-based detection of the wec gene cluster involved in the biosynthetic pathway leading to the production of enterobacterial common antigen (ECA). Escherichia coli DNA was detected using wec A, wec E, and wec F gene primers. The wec A primers were specific for E. coli. The wec E and wec F primers enabled the detection of the most frequent species of the Enterobacteriaceae found in blood and urine specimens as well as in water. The sensitivity of the assay was approximately 1.2 x 102 bacteria/mL of water. Thus, these primers represent an important step in the molecular diagnosis of major Enterobacteriaceae infections. Their role in the routine testing of contamination in drinking water and food may prove to be very useful. The DNA of Enterobacteriaceae species is detected in a first step PCR, followed by specific identification of important pathogens like E. coli O157, Shigella spp., Salmonella spp., and Yersinia spp.  相似文献   

11.
A multiplex PCR assay, amplifying seven specific virulence genes and one internal control gene in a single reaction, was developed to identify the five main pathotypes of diarrheagenic Escherichia coli and Shigella spp. The virulence genes selected for each category were Stx1, Stx2, and eaeA for enterohemorrhagic E. coli (EHEC), eaeA for enteropathogenic E. coli (EPEC), STIb and LTI for enterotoxigenic E. coli (ETEC), ipaH for enteroinvasive E. coli (EIEC) and Shigella spp., and aggR for enteroaggregative E. coli (EAEC). Each forward primer was labelled with a fluorochrome and the PCR products were separated by multicolour capillary electrophoresis on an ABI PRISM310 Genetic Analyzer (Applied Biosystems). If present, several gene variants of each virulence gene were identified. The internal control gene rrs, encoding 16S rRNA, was amplified in all 110 clinical strains analyzed. Virulence genes were demonstrated in 103 (94%) of these strains. In the majority of the cases (98/103, 95%), classification obtained by the novel multiplex PCR assay was in agreement with that previously determined by phenotypic assays combined with other molecular genetic approaches. Numerous multiplex PCR assays have been published, but only a few of them detect all five E. coli pathotypes within a single reaction, and none of them has used multicolour capillary electrophoresis to separate the PCR products. The octaplex PCR assay followed by capillary electrophoresis presented in the present paper provides a simple, reliable, and rapid procedure that in a single reaction identifies the five main pathotypes of E. coli, and Shigella spp. This assay will replace the previous molecular genetic methods used in our laboratory and work as an important supplement to the more time-consuming phenotypic assays.  相似文献   

12.
A commercial β-glucuronidase (β-GUR) test for the rapid and economical identification of Escherichia coli was evaluated. A total of 762 clinical strains and 228 environmental isolates were studied. More than 95% of the E. coli strains were found to be β-GUR positive. Thirty-one clinical isolates of Shigella sonnei , 10 of Enterobacter cloacae , eight of Enterobacter aerogenes, nine of Citrobacter freundii and one of Salmonella enteritidis also gave positive results. The enzyme β-GUR was also detected in two environmental strains of E. cloacae and one C. freundii. A comparative study between the β-GUR test and the conventional identification system was carried out in 233 consecutive isolates of lactose positive enterobacteria. Agreement was observed in 223 cases and 190 E. coli strains were correctly identified using this test. Discrepancies were found in 10 cases: nine E. coli were β-GUR negative and one C. freundii was β-GUR positive. Escherichia coli was the only species positive for both β-GUR and indole tests. This procedure permits a rapid, easy, precise and inexpensive identification of E. coli. β-GUR positive Enterobacter strains have not previously been described.  相似文献   

13.
The Defined Substrate Technology Colilert System (DST CS), which simultaneously detects total coliforms and Escherichia coli from a primary water sample, has been approved for use in the United States and other countries. The test determines the presence of E. coli in water by detection of β-glucuronidase (β-glu), an enzyme found in more than 95% of this species. In contrast, the elevated temperature lactose fermentation test, known as the 'faecal coliform' test, shows a false-negative rate of 15% and a false-positive rate of 15%. In a recent study of oxidant-damaged E. coli it was observed that Shigella spp. could produce a positive β-glu. Shigellas were therefore collected from laboratories and utilities throughout the world to determine the incidence of β-glu positivity by the widely used DST CS. The shigellas were diluted to low concentrations (between 1 and 10 100 ml-1) to simulate a pollution event. The DST CS demonstrated a 71%β-glu positive rate. In comparison, less than 2% of shigellas gave a positive faecal coliform test. Because shigellosis is primarily a water-borne disease, the ability of the DST CS to detect this genus increases the public health protection afforded by this method.  相似文献   

14.
A rapid and direct fluorogenic assay was used to detect Escherichia coli in urine. Most clinical isolates of E. coli produce β-glucuronidase, whereas almost all other enterobacteria lack the enzyme. Spectrofluorimetric assay of β-glucuronidase, without previous induction, was performed on growing and starved uropathogenic E. coli in artificial urine. The presence of 103 cfu ml-1 of E. coli in urine was detected by β-glucuronidase activity in less than 1 h. These results indicate that β-glucuronidase is a rapid, specific and sensitive indicator of the presence of E. coli in urine, and provide additional information on the biological state of the infecting bacterial population.  相似文献   

15.
Shigella is an important human pathogen and is closely related to Escherichia coli. O-antigen is the most variable part of the lipopolysaccharide on the cell surface of Gram-negative bacteria and plays an important role in pathogenicity. The O-antigen gene cluster of S. boydii O1 was sequenced. The putative genes encoding enzymes for rhamnose synthesis, transferases, O-unit flippase, and O-unit polymerase were identified on the basis of homology. The O-antigen gene clusters of S. boydii O1 and E. coli O149, which share the same O-antigen form, were found to have the same genes and organization by adjacent gene PCR assay. Two genes specific for S. boydii O1 and E. coli O149 were identified by PCR screening against E. coli- and Shigella-type strains of the 186 known O-antigen forms and 39 E. coli clinical isolates. A PCR sensitivity of 103 to 104 CFU/mL overnight culture of S. boydii O1 and E. coli O149 was obtained. S. boydii O1 and E. coli O149 were differentiated by PCR using lacZ- and cadA-based primers.  相似文献   

16.
大肠杆菌O11是一种可在人畜间交叉传染的强致病菌,具有潜在流行性爆发的危险。现完成了O11 O-抗原基因簇的破译,筛选和鉴定了多种特异分子标识,并实现了对大肠杆菌O11的快速、灵敏和准确的分子分型检测。利用鸟枪法测定大肠杆菌O11 O-抗原基因簇的序列全长为14180bp,生物信息学方法分析序列结构,共发现12个基因:GDP-L型岩藻糖合成途径基因(gmd,fcl,gmm,manC,manB)、UDP-N乙酰葡萄糖C4异构酶基因(gne)、O-抗原转运酶基因(wzx)、O-抗原聚合酶基因(wzy)和4个糖基转移酶基因;用PCR方法筛选出2个针对大肠杆菌O11的特异基因和4对特异引物,并进行环境样品检测实验鉴定了该PCR检测方法的灵敏度;设计并筛选出8条针对大肠杆菌O11的特异探针。  相似文献   

17.
A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturable Escherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35 degrees C, individual microcolonies of E. coli were detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targeting P. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other than E. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results.  相似文献   

18.
We have developed an oligonucleotide-chip based assay for detection of 16S ribosomal PCR products from tick-borne bacteria. This chip contains 14 specific probes, which target variable regions of 16S rDNA of tick-borne bacteria including Borrellia spp., Rickettsia spp., Anaplasma spp., Coxiella burnetii and Francisella tularensis. The specificity of these probes was tested by hybridization of the chip with fluorescently labeled PCR products amplified from the genomic DNA of selected tick-borne bacteria. The assay was also tested for detection of tick-borne bacteria in single ticks.  相似文献   

19.
The activities of four enzymes (β-glucosidase, β-glucuronidase, nitrate reductase and nitroreductase) in selected intestinal bacteria ( Escherichia coli, Clostridium sp., Streptococcus sp., Bacteroides sp. and Lactobacillus salivarius ) were measured after growth in vitro and in vivo . The five strains differed in their activites with Clostridium sp. being the most active for β-gjucosidase, β-glucuronidase and nitroreductase, and E. coli the most active producer of nitrate reductase. Enzyme activity in vivo tended to be higher than in vitro but there were instances where the comparative activities were reversed.  相似文献   

20.
Geng P  Zhang X  Teng Y  Fu Y  Xu L  Xu M  Jin L  Zhang W 《Biosensors & bioelectronics》2011,26(7):3325-3330
A new type of DNA sequence-specific electrochemical biosensor based on magnetic beads for the detection of Escherichia coli is reported in the present work. Alginic acid-coated cobalt magnetic beads, capped with 5'-(NH(2)) oligonucleotide and employed not only for magnetic separation but also as the solid adsorbent, were used as DNA probes to hybridize with the target E. coli DNA sequence. This assay was specific for E. coli detection depending on the uid A gene, which encodes for the enzyme β-d-glucuronidase produced by E. coli strains. When daunomycin (DNR) was used as DNA hybridization indicator, the target sequences of E. coli hybridized with the probes resulted in the decrease of DNR reduction peak current, which was proportional to the E. coli concentration. The optimization of the hybridization detection was carried out and the specificity of the probes was also demonstrated. This DNA biosensor can be employed to detect a complementary target sequence for 3.0×10(-10) mol/L and denatured PCR products for 0.5 ng/μL. The linear range of the developed biosensor for the detection of E. coli cells was from 1.0×10(2) to 2.0×10(3) cells/mL with a detection limit of 50 cells/mL. After a brief enrichment process, a concentration of 10 cells/mL E. coli in real water samples was detected by the electrochemical biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号