首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Hilgenberg LG  Su H  Gu H  O'Dowd DK  Smith MA 《Cell》2006,125(2):359-369
Agrin, through its interaction with the receptor tyrosine kinase MuSK, mediates accumulation of acetylcholine receptors (AChR) at the developing neuromuscular junction. Agrin has also been implicated in several functions in brain. However, the mechanism by which agrin exerts its effects in neural tissue is unknown. Here we present biochemical evidence that agrin binds to the alpha3 subunit of the Na+/K+-ATPase (NKA) in CNS neurons. Colocalization with agrin binding sites at synapses supports the hypothesis that the alpha3NKA is a neuronal agrin receptor. Agrin inhibition of alpha3NKA activity results in membrane depolarization and increased action potential frequency in cortical neurons in culture and acute slice. An agrin fragment that acts as a competitive antagonist depresses action potential frequency, showing that endogenous agrin regulates native alpha3NKA function. These data demonstrate that, through its interaction with the alpha3NKA, agrin regulates activity-dependent processes in neurons, providing a molecular framework for agrin action in the CNS.  相似文献   

2.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron-neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin-deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin-deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma-aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age-matched wild-type neurons during the first 3 weeks in culture. These results demonstrate that neuron-specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction.  相似文献   

3.
Agrin is a motoneuron-derived signaling factor that plays a key organizing role in the initial stages of neuromuscular synapse formation. Agrin is expressed in other regions of the developing central and peripheral nervous systems, however, raising the possibility that it also directs the formation of some interneuronal synapses. To address this question, we have examined the expression and localization of agrin during formation of cholinergic, interneuronal synapses in the sympathetic system. In the superior cervical ganglia (SCG) in vivo, we found that agrin is highly expressed, and that it is present at, but is not limited to, synapses. In SCG neuronal cultures that were treated with ciliary neurotrophic factor to induce a uniform cholinergic phenotype, we found that agrin immunostaining colocalized precisely with cholinergic terminals and aggregates of neuronal acetylcholine receptor on the neuronal cell bodies and dendrites. Moreover, we found that alpha-dystroglycan, which is a potential receptor for agrin, is also concentrated at these cholinergic synaptic contacts. Finally, the SCG neurons expressed the C-terminal isoform of agrin that is neural-specific and highly active in synaptogenesis, and also the N-terminal splice isoform that occurs as a type II transmembrane protein. These findings show that agrin is specifically localized at sympathetic synapses in vitro, and are consistent with it playing a role in interneuronal synapse formation.  相似文献   

4.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron–neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin‐deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin‐deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma‐aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age‐matched wild‐type neurons during the first 3 weeks in culture. These results demonstrate that neuron‐specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 547–557, 1999  相似文献   

5.
Agrin is a basal lamina protein that induces aggregation of acetylcholine receptors (AChRs) and other molecules at the developing neuromuscular junction. Alternative splicing of chick agrin mRNA at two sites, A and B, gives rise to eight possible isoforms of which five are expressed in vivo. Motor neurons express high levels of isoforms with inserts at sites A and B, muscle cells synthesize isoforms that lack amino acids at the B-site. To obtain further insights into the mechanism of agrin-induced AChR aggregation, we have determined the EC50 (effective concentration to induce half-maximal AChR clustering) of each agrin isoform and of truncation mutants. On chick myotubes, EC50 of the COOH-terminal, 95-kD fragment of agrinA4B8 was approximately 35 pM, of agrinA4B19 approximately 110 pM and of agrinA4B11 approximately 5 nM. While some AChR clusters were observed with 64 nM of agrinA4B0, no activity was detected for agrinA0B0. Recombinant full-length chick agrin and a 100-kD fragment of ray agrin showed similar EC50 values. A 45-kD, COOH-terminal fragment of agrinA4B8 retained high activity (EC50 approximately equal to 130 pM) and a 21-kD fragment was still active, but required higher concentrations (EC50 approximately equal to 13 nM). Unlike the 45-kD fragment, the 21-kD fragment neither bound to heparin nor did heparin inhibit its capability to induce AChR aggregation. These data show quantitatively that agrinA4B8 and agrinA4B19, expressed in motor neurons, are most active, while no activity is detected in agrinA0B0, the dominant isoform synthesized by muscle cells. Furthermore, our results show that a fragment comprising site B8 and the most COOH- terminal G-like domain is sufficient for this activity, and that agrin domains required for binding to heparin and those for AChR aggregation are distinct from each other.  相似文献   

6.
Agrin plays an organizing role in the formation of sympathetic synapses   总被引:5,自引:0,他引:5  
Agrin is a nerve-derived factor that directs neuromuscular synapse formation, however its role in regulating interneuronal synaptogenesis is less clear. Here, we examine agrin's role in synapse formation between cholinergic preganglionic axons and sympathetic neurons in the superior cervical ganglion (SCG) using agrin-deficient mice. In dissociated cultures of SCG neurons, we found a significant decrease in the number of synapses with aggregates of presynaptic synaptophysin and postsynaptic neuronal acetylcholine receptor among agrin-deficient neurons as compared to wild-type neurons. Moreover, the levels of pre- and postsynaptic markers at the residual synapses in agrin-deficient SCG cultures were also reduced, and these defects were rescued by adding recombinant neural agrin to the cultures. Similarly, we observed a decreased matching of pre- and postsynaptic markers in SCG of agrin-deficient embryos, reflecting a decrease in the number of differentiated synapses in vivo. Finally, in electrophysiological experiments, we found that paired-pulse depression was more pronounced and posttetanic potentiation was significantly greater in agrin-deficient ganglia, indicating that synaptic transmission is also defective. Together, these findings indicate that neural agrin plays an organizing role in the formation and/or differentiation of interneuronal, cholinergic synapses.  相似文献   

7.
Agrin has been implicated in multiple aspects of central nervous system (CNS) neuron differentiation and function including neurite formation, synaptogenesis, and synaptic transmission. However, little is known about the signaling mechanisms whereby agrin exerts its effects. We have recently identified a neuronal receptor for agrin, whose activation induces expression of c-fos, and provided evidence that agrin binding to this receptor is associated with a rise in intracellular Ca2+, a ubiquitous second messenger capable of mediating a wide range of effects. To gain further insight into agrin's role in brain, we used Ca2+ imaging to explore agrin signal transduction in cultured cortical neurons. Bath application of either z+ or z-agrin isoforms resulted in marked changes in intracellular Ca2+ concentration specifically in neurons. Propagation of the Ca2+ response was a two-step process characterized by an initial increase in intracellular Ca2+ mediated by ryanodine receptor (RyR) release from intracellular stores, supplemented by influx through voltage-gated calcium channels (VGCCs). Agrin-induced increases in intracellular Ca2+ were blocked by genistein and herbimycin, suggesting that the agrin receptor is a tyrosine kinase. Ca2+ release from intracellular stores activates both calcium/calmodulin-dependent kinase II (CaMKII) and mitogen activated protein kinase (MAPK). Activation of CaMKII is required for propagation of the Ca2+ wave itself, whereas both MAPK and CaMKII play a role in mediating long latency responses such as induction of c-fos. These results suggest that an agrin-dependent tyrosine kinase could play a critical role in modulating levels of intracellular Ca2+ and activity of MAPK and CaMKII in CNS neurons.  相似文献   

8.
Agrin is required for appropriate pre- and postsynaptic differentiation of neuromuscular junctions. While agrin's ability to orchestrate postsynaptic differentiation is well documented, more recent experiments have suggested that agrin is also a "stop signal" for the presynaptic neuron, and that agrin has actions on neurons in the CNS. To elucidate the neuronal activities of agrin and to define the receptor(s) responsible for these functions, we have examined adhesions of neurons and their neurite-outgrowth responses to purified agrin in vitro. We find that both full-length agrin and the C-terminal 95 kDa of agrin (agrin c95), which is sufficient to induce postsynaptic differentiation, are adhesive for chick ciliary ganglion (CG) and forebrain neurons. Consistent with previous findings, our results show that N-CAM binds to full-length agrin, and suggest that alpha-dystroglycan is a neuronal receptor for agrin c95. In neurite outgrowth assays, full-length agrin inhibited both laminin- and N-cadherin-induced neurite growth from CG neurons. The N-terminal 150 kDa fragment of agrin, but not agrin c95, inhibited neurite outgrowth, indicating that domains in the N-terminal portion of agrin are sufficient for this function. Adhesion assays using protein-coated beads and agrin-expressing cells revealed differential interactions of agrin with members of the immunoglobulin superfamily of cell adhesion molecules. However, none of these, including N-CAM, appeared to be critical for neuronal adhesion. In summary, our results suggest that the N-terminal half of agrin is involved in agrin's ability to inhibit neurite outgrowth. Our results further suggest that neither alpha-dystroglycan nor N-CAM, two known binding proteins for agrin, mediate this effect.  相似文献   

9.
Agrin is required for appropriate pre‐ and postsynaptic differentiation of neuromuscular junctions. While agrin's ability to orchestrate postsynaptic differentiation is well documented, more recent experiments have suggested that agrin is also a “stop signal” for the presynaptic neuron, and that agrin has actions on neurons in the CNS. To elucidate the neuronal activities of agrin and to define the receptor(s) responsible for these functions, we have examined adhesions of neurons and their neurite‐outgrowth responses to purified agrin in vitro. We find that both full‐length agrin and the C‐terminal 95 kDa of agrin (agrin c95), which is sufficient to induce postsynaptic differentiation, are adhesive for chick ciliary ganglion (CG) and forebrain neurons. Consistent with previous findings, our results show that N‐CAM binds to full‐length agrin, and suggest that α‐dystroglycan is a neuronal receptor for agrin c95. In neurite outgrowth assays, full‐length agrin inhibited both laminin‐ and N‐cadherin–induced neurite growth from CG neurons. The N‐terminal 150 kDa fragment of agrin, but not agrin c95, inhibited neurite outgrowth, indicating that domains in the N‐terminal portion of agrin are sufficient for this function. Adhesion assays using protein‐coated beads and agrin‐expressing cells revealed differential interactions of agrin with members of the immunoglobulin superfamily of cell adhesion molecules. However, none of these, including N‐CAM, appeared to be critical for neuronal adhesion. In summary, our results suggest that the N‐terminal half of agrin is involved in agrin's ability to inhibit neurite outgrowth. Our results further suggest that neither α‐dystroglycan nor N‐CAM, two known binding proteins for agrin, mediate this effect. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 164–179, 2002; DOI 10.1002/neu.10025  相似文献   

10.
Lrp4 is a receptor for Agrin and forms a complex with MuSK   总被引:1,自引:0,他引:1  
Neuromuscular synapse formation requires a complex exchange of signals between motor neurons and skeletal muscle fibers, leading to the accumulation of postsynaptic proteins, including acetylcholine receptors in the muscle membrane and specialized release sites, or active zones in the presynaptic nerve terminal. MuSK, a receptor tyrosine kinase that is expressed in skeletal muscle, and Agrin, a motor neuron-derived ligand that stimulates MuSK phosphorylation, play critical roles in synaptic differentiation, as synapses do not form in their absence, and mutations in MuSK or downstream effectors are a major cause of a group of neuromuscular disorders, termed congenital myasthenic syndromes (CMS). How Agrin activates MuSK and stimulates synaptic differentiation is not known and remains a fundamental gap in our understanding of signaling at neuromuscular synapses. Here, we report that Lrp4, a member of the LDLR family, is a receptor for Agrin, forms a complex with MuSK, and mediates MuSK activation by Agrin.  相似文献   

11.

Background

Agrin is the key inducer of postsynaptic differentiations at the neuromuscular junction. The multidomain heparan sulfate proteoglycan is mediating via its N-terminal segment the interaction with laminin, whereas the C-terminal portion is responsible for Dystroglycan binding and clustering of the Acetylcholine receptor. Matrix metalloproteinases (MMP) are known to play essential roles in matrix remodeling, degradation and regulation of extracellular signaling networks.

Principal Findings

Site-specific processing of Agrin provides key insight into regulatory effects of Matrix metalloproteinases (MMPs). Here, we present a detailed study of agrin processing by different MMPs together with a molecular understanding of binding and cleavage at both terminal fragments. The data suggest for a regulatory effect of MMP cleavage at particularly important functional sites of agrin. Cleave of agrin abolishes the agrin-laminin complex formation and the Acetylcholine receptor clustering at the neuromuscular junction.

Conclusion/Significance

Agrin is a target of specific MMP processing resulting in agrin subfragments with different regulatory activities. MMP processing is a powerful tool to regulate extracellular signaling networks.  相似文献   

12.
Agrin released by motoneurons induces and/or maintains acetylcholine receptor (AChR) clustering and other aspects of postsynaptic differentiation at the vertebrate neuromuscular junction. Agrin acts by binding and activating a receptor complex containing LDL receptor protein 4 (Lrp4) and muscle-specific kinase (MuSK). Two critical downstream components of this signaling cascade, Dox-7 and rapsyn, have been identified. However, additional intracellular essential elements remain unknown. Prior observations by others and us suggested antagonistic interactions between agrin and neuregulin-1 (Nrg-1) signaling in cultured myotubes and developing muscle fibers in vivo. A hallmark of Nrg-1 signaling in skeletal muscle cells is the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). ERK1/2 are also activated in most cells by phorbol 12-myristate 13-acetate, a classical inhibitor of agrin-induced AChR clustering in myotubes. Here, it was investigated whether agrin activates ERK1/2 directly and whether such activation modulates agrin-induced AChR clustering. Agrin induced a rapid but transient activation of ERK1/2 in myotubes that was Lrp4/MuSK-dependent. However, blocking this ERK1/2 activation did not prevent but potentiated AChR clustering induced by agrin. ERK1/2 activation was dispensable for Nrg-1-mediated inhibition of the AChR clustering activity of agrin, but was indispensable for such activity by phorbol 12-myristate 13-acetate. Together, these results suggest agrin-induced activation of ERK1/2 is a negative modulator of agrin signaling in skeletal muscle cells.  相似文献   

13.
Agrin secreted by motor neurons is a critical signal for postsynaptic differentiation at the developing neuromuscular junction. We used cultures of chick ventral spinal cord neurons with rat myotubes and immunofluorescence with species-specific antibodies to determine the distribution of agrin secreted by neurons and compare it to the distribution of agrin secreted by myotubes. In addition, we determined the distribution of agrin secreted by isolated chick ventral spinal cord neurons and rat motor neurons grown on a substrate that binds agrin. In cocultures, neuronal agrin was concentrated along axons at sites of axon-induced acetylcholine receptor (AChR) aggregation and was found at every such synaptic site, consistent with its role in synaptogenesis. Smaller amounts of agrin were found on dendrites and cell bodies and rarely were associated with AChR aggregation. Muscle agrin, recognized by an antibody against rat agrin, was found at nonsynaptic sites of AChR aggregation but was not detected at synaptic sites, in contrast to neuronal agrin. In cultures of isolated chick neurons or rat motor neurons, agrin was deposited relatively uniformly around axons and dendrites during the first 2-3 days in culture. In older cultures, agrin immunoreactivity was markedly more intense around axons than dendrites, indicating that motor neurons possess an intrinsic, developmentally regulated program to target agrin secretion to axons.  相似文献   

14.
Structure and expression of a rat agrin.   总被引:23,自引:0,他引:23  
Agrin is a component of the basal lamina that causes the aggregation of acetylcholine receptors on cultured muscle fibers. An agrin cDNA clone isolated from electromotor neurons of a marine ray was used to characterize the corresponding cDNAs from a rat embryonic spinal cord library. Analysis of a set of clones predicts a 1940 amino acid protein containing 141 cysteine residues. The predicted protein has nine domains homologous to protease inhibitors, a region similar to domain III of laminin, and four epidermal growth factor repeats. The agrin gene is expressed in rat embryonic nervous system and muscle. The rat agrin protein is concentrated at synapses, where it may play a role in development and regeneration.  相似文献   

15.
Agrin is a heparan sulfate proteoglycan that is required for the formation and maintenance of neuromuscular junctions. During development, agrin is secreted from motor neurons to trigger the local aggregation of acetylcholine receptors (AChRs) and other proteins in the muscle fiber, which together compose the postsynaptic apparatus. After release from the motor neuron, agrin binds to the developing muscle basal lamina and remains associated with the synaptic portion throughout adulthood. We have recently shown that full-length chick agrin binds to a basement membrane-like preparation called Matrigel™. The first 130 amino acids from the NH2 terminus are necessary for the binding, and they are the reason why, on cultured chick myotubes, AChR clusters induced by full-length agrin are small. In the current report we show that an NH2-terminal fragment of agrin containing these 130 amino acids is sufficient to bind to Matrigel™ and that the binding to this preparation is mediated by laminin-1. The fragment also binds to laminin-2 and -4, the predominant laminin isoforms of the muscle fiber basal lamina. On cultured myotubes, it colocalizes with laminin and is enriched in AChR aggregates. In addition, we show that the effect of full-length agrin on the size of AChR clusters is reversed in the presence of the NH2-terminal agrin fragment. These data strongly suggest that binding of agrin to laminin provides the basis of its localization to synaptic basal lamina and other basement membranes.  相似文献   

16.
The clustering of acetylcholine receptors (AChRs) in skeletal muscle fibers is a critical event in neuromuscular synaptogenesis. AChRs in concert with other molecules form postsynaptic scaffolds in response to agrin released from motor neurons as motor neurons near skeletal muscle fibers in development. Agrin drives an intracellular signaling pathway that precedes AChR clustering and includes the tyrosine phosphorylation of AChRs. In C2C12 myotube culture, agrin application stimulates the agrin signaling pathway and AChR clustering. Previous studies have determined that the frequency of spontaneous AChR clustering is decreased and AChRs are partially inactivated when bound by the acetylcholine agonist nicotine. We hypothesized that nicotine interferes with AChR clustering and consequent postsynaptic scaffold formation. In the present study, C2C12 myoblasts were cultured with growth medium to stimulate proliferation and then differentiation medium to stimulate fusion into myotubes. They were bathed in a physiologically relevant concentration of nicotine and then subject to agrin treatment after myotube formation. Our results demonstrate that nicotine decreases agrin-induced tyrosine phosphorylation of AChRs and decreases the frequency of spontaneous as well as agrin-induced AChR clustering. We conclude that nicotine interferes with postsynaptic scaffold formation by preventing the tyrosine phosphorylation of AChRs, an agrin signaling event that precedes AChR clustering.  相似文献   

17.
Agrin is an extracellular matrix component which promotes the clustering of nicotinic acetylcholine receptors (nAChRs) and other proteins at the neuromuscular junction. This aggregation process is one of the earliest steps in synapse formation. Expression of highly active isoforms of agrin, generated by alternative splicing, is restricted to neurons in the central nervous system (CNS) including motoneurons. In the experiments reported here we investigate the regions of agrin necessary for nAChR clustering activity using two different methods. First, we expressed truncated soluble forms of the agrin protein in mammalian cells and assessed their clustering activity. Second, we generated a panel of monoclonal antibodies (mAbs) against agrin and mapped their epitopes. Several mAbs block agrin-induced aggregation of nAChRs. One of the mAbs, Agr86, binds exclusively to the CNS-specific splicing variants and thus identifies an epitope common only to these more active isoforms. Mapping of the Agr86 epitope suggests that alternative splicing results in a distributed conformational change in the agrin protein. Taken together our data suggest that four domains in the C-terminal 55 kDa of agrin contribute to its nAChR clustering activity.  相似文献   

18.
Agrin activates an intracellular signaling pathway to induce the formation of postsynaptic specializations on muscle fibers. In myotubes in culture, this pathway has been shown to include autophosphorylation of the muscle‐specific kinase MuSK, activation of Src‐family kinases, tyrosine phosphorylation of the acetylcholine receptor (AChR) β subunit, a decrease in receptor detergent extractability, and the accumulation of AChRs into high‐density aggregates. Here we report that treating chick myotubes with lithium prevented any detectable agrin‐induced change in AChR distribution without affecting the number of AChRs or the agrin‐induced change in AChR tyrosine phosphorylation and detergent extractability. Lithium treatment also increased the rate at which AChR aggregates disappeared when agrin was removed. The effects of lithium developed slowly over the course of approximately 12 h. Thus, sensitivity to lithium identifies a late step in the agrin signaling pathway, after agrin‐induced MuSK and AChR phosphorylation, that is necessary for the recruitment of AChRs into visible aggregates. © 2002 Wiley Periodicals, Inc. J Neurobiol 54: 346–357, 2003  相似文献   

19.
Synapse formation in the CNS is a complex process that involves the dynamic interplay of numerous signals exchanged between pre- and postsynaptic neurons as well as perisynaptic glia. Members of the neurotrophin family, which are widely expressed in the developing and mature CNS and are well-known for their roles in promoting neuronal survival and differentiation, have emerged as key synaptic modulators. However, the mechanisms by which neurotrophins modulate synapse formation and function are poorly understood. Here, we summarize our work on the role of neurotrophins in synaptogenesis in the CNS, in particular the role of these signaling molecules and their receptors, the Trks, in the development of excitatory and inhibitory hippocampal synapses. We discuss our results that demonstrate that postsynaptic TrkB signaling plays an important role in modulating the formation and maintenance of NMDA and GABAA receptor clusters at central synapses, and suggest that neurotrophin signaling coordinately modulates these receptors as part of mechanism that promotes the balance between excitation and inhibition in developing circuits. We also discuss our results that demonstrate that astrocytes promote the formation of GABAergic synapses in vitro by differentially regulating the development of inhibitory presynaptic terminals and postsynaptic GABAA receptor clusters, and suggest that glial modulation of inhibitory synaptogenesis is mediated by neurotrophin-dependent and -independent signaling. Together, these findings extend our understanding of how neuron-glia communication modulates synapse formation, maintenance and function, and set the stage for defining the cellular and molecular mechanisms by which neurotrophins and other cell-cell signals direct synaptogenesis in the developing brain.  相似文献   

20.
Neuronal synapse formation is a multistep process regulated by several pre- and postsynaptic adhesion and signaling proteins. Recently, we found that agrin acts as one such synaptogenic factor at neuronal synapses in the PNS by demonstrating that structural synapse formation is impaired in the superior cervical ganglia (SCG) of z+ agrin-deficient mice and in SCG cultures derived from those animals. Here, we tested whether synaptic function is defective in agrin-null (AGD-/-) ganglia and began to define agrin's mechanism of action. Our electrophysiological recordings of compound action potentials showed that presynaptic stimulation evoked action potentials in approximately 40% of AGD-/- ganglionic neurons compared to 90% of wild-type neurons; moreover, transmission could not be potentiated as in wild-type or z+ agrin-deficient ganglia. Intracellular recordings also showed that nerve-evoked excitatory postsynaptic potentials in AGD-/- neurons were only 1/3 the size of those in wild-type neurons and mostly subthreshold. Consistent with these defects in transmission, we found an approximately 40-50% decrease in synapse number in AGD-/- ganglia and cultures, and decreased levels of differentiation at the residual synapses in culture. Furthermore, surface levels of acetylcholine receptors (AChRs) were equivalent in cultured AGD-/- and wild-type neurons, and depolarization reduced the synaptic localization of AChRs in AGD-/- but not wild-type neurons. These findings provide the first direct demonstration that agrin is required for proper structural and functional development of an interneuronal synapse in vivo. Moreover, they suggest a novel role for agrin, in stabilizing the postsynaptic density of nAChR at nascent neuronal synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号