首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Non-ciliated SER-rich cells of the tracheal epithelium of normal, phenobarbital-treated and 3-methylcholanthrene-treated mice were studied ultrastructurally and immunohistochemically. The apical portion of these cells protrudes into the tracheal lumen, especially in the mice treated with the two compounds, and the apical cytoplasm is filled with numerous tubular elements of SER. Besides, the non-ciliated cells of 3-methylcholanthrene-treated mice show a strong positive reaction to the antiserum against microsomal cytochrome P-450 of liver. These findings support the concept that the non-ciliated tracheal cell may be involved in the metabolism of endogeneous and exogeneous chemical compounds.This study was supported by grants from the Ministry of Education, Science and Culture, Japan  相似文献   

2.
The process of seminiferous cord formation is the first morphological event that differentiates a testis from an ovary and indicates male sex determination. Cord formation occurs by embryonic Day 14 (Day 0 = plug date; E14) in the rat. A series of experiments were conducted to determine if neurotropins and their receptors are important for the process of rat embryonic cord formation. The expression of low affinity neurotropin receptor (p75/LNGFR) was determined by immunohistochemistry on sections of both testis and ovary from E13 through birth (Day 0, P0) with an antibody to p75/LNGFR. The staining for p75/LNGFR was present in the mesonephros of E13 gonads and in a sex-specific manner appeared around developing cords at E14 in the embryonic testis. At birth, staining for p75/LNGFR was localized to a single layer of cells (i.e., peritubular cells) that surrounded the seminiferous cords. The genes for both neurotropin 3 (NT3) and for corresponding high affinity neurotropin trkC receptor were found to be expressed in the E14 rat testis, as well as other neurotropins and receptors. Immunocytochemical analysis of E14 rat testis demonstrated that NT3 was localized to the Sertoli cells and trkC was present in individual cells of the interstitium at E16 and in selected preperitubular cells at E18. Previously, the peritubular cells adjacent to the cords were demonstrated to be derived from migrating mesonephros cells around the time of cord formation. To determine if neurotropins were involved in cord formation, the actions of neurotropins were inhibited. A high affinity neurotropin receptor (trk)-specific kinase inhibitor, K252a, was used to treat organ cultures of testes from E13 rats prior to cord formation. Treatment of E13 testis organ cultures with K252a completely inhibited cord formation. K252a-treated organ cultures of E14 testis that contained cords did not alter cord morphology. A second experiment to inhibit neurotropin actions utilized a specific antagonist trk-IgG chimeric fusion protein and E13 testis organ cultures. The trk-IgG molecules dimerize with endogenous trk receptors and inhibit receptor signaling and activation of ligand function. Forty percent of E13 testis organ cultures treated with trkC-IgG had significantly reduced cord formation. TrkA-IgG had no effect on initiation of cords; however, in fifty percent of the treated organs, a "swollen" appearance of the cord structures was observed. Experiments using trkB-IgG chimeric protein on E13 organ cultures had no effect on cord formation or cord morphology. The testes from trkC and NT3 knockout mice were examined to determine if there were any morphological differences in the testis. NT3 knockouts appeared to have normal cord morphology in E15 and E17 testis. TrkC knockout mice also had normal cord morphology in E14 and P0 testis. Both NT3 and trkC knockout-mice testis had less interstitial area than wild-type controls. In addition, the trkC knockout mice have an increased number of cells expressing p75LNGFR within the cords when compared to controls or NT3 knockout mice. Combined observations suggest compensation between the different neurotropin ligands, receptors, and/or possibly different growth factors for this critical biological process. In summary, results suggest a novel nonneuronal role for neurotropins in the process of cord formation during embryonic rat testis development. The hypothesis developed is that neurotropins are involved in the progression of male sex differentiation and are critical for the induction of embryonic testis cord formation.  相似文献   

3.
Prior to entry into meiosis, XX germ cells in the fetal ovary undergo X chromosome reactivation. The signal for reactivation is thought to emanate from the genital ridge, but it is unclear whether it is specific to the developing ovary. To determine whether the signals are present in the developing testis as well as the ovary, we examined the expression of X-linked genes in germ cells from XXY male mice. To facilitate this analysis, we generated XXY and XX fetuses carrying X chromosomes that were differentially marked and subject to nonrandom inactivation. This pattern of nonrandom inactivation was maintained in somatic cells but, in XX as well as XXY fetuses, both parental alleles were expressed in germ cell-enriched cell populations. Because testis differentiation is temporally and morphologically normal in the XXY testis and because all germ cells embark upon a male pathway of development, these results provide compelling evidence that X chromosome reactivation in fetal germ cells is independent of the somatic events of sexual differentiation. Proper X chromosome dosage is essential for the normal fertility of male mammals, and abnormalities in germ cell development are apparent in the XXY testis within several days of X reactivation. Studies of exceptional germ cells that survive in the postnatal XXY testis demonstrated that surviving germ cells are exclusively XY and result from rare nondisjunctional events that give rise to clones of XY cells.  相似文献   

4.
5.
6.
The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA). Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8-9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may be important in regulating the onset of meiosis in the human fetal ovary, mechanisms other than CYP26B1-mediated metabolism of RA may exist to inhibit the entry of germ cells into meiosis in the human fetal testis.  相似文献   

7.
《Reproductive biology》2020,20(4):555-567
Expression levels of genes involved in the development of germ cells vary throughout the process from bipotential gonadal period to adult gonadal formation. In mice, developments of female and male reproductive system are regulated by germ cell-specific factors and hormones, and determinative days in this regulation are very important. c-Abl is a non-receptor tyrosine kinase with cellular functions including cell proliferation, growth and development. mTERT is involved in maintaining telomerase activity and proliferation of surviving cells. We suggested that c-Abl and mTERT might be important for the healthy development of prenatal and postnatal mouse ovary and testis. We aim to demonstrate localization and expressions of c-Abl and mTERT in crucial days of ovary and testis development in prenatal and postnatal period in mouse by immunofluorescence staining and qRT-PCR, respectively. The importance of c-Abl and mTERT expressions during the healthy gonadal development is indicated in the prenatal and postnatal gonadal development. Also, protein expression levels were detected by Western Blot in only postnatal ovary and testis. Determining the functions of the c-Abl and mTERT throughout the process will be important in terms of understanding the infertility cases in the female and male with future studies.  相似文献   

8.
Using an anti-serum against synthetic alpha-inhibin-31, we have studied its cellular locations in rodent testis and brain. Western blot analysis detected several molecular forms of the protein(s). A protein of 17 KDa in size was detected in testis of one month old mice. Two major bands of molecular weights 39 kDA and 21 kDA were detected in mature mouse testis. The 39 kDA protein was also present in male brain, female brain and ovary. No protein similar in size to alpha-inhibin-31 was detected with this antiserum, suggesting that the antibody recognized only the precursor of the alpha-IB-31 molecule. Immunocytochemical studies revealed that these molecules were located in the cytoplasm of the interstitial Leydig cells. The immunocytochemical reaction can be eliminated by pre-incubation with synthetic alpha-inhibin-31. Immunoreactive substances were also demonstrated at the blood-brain barrier on the external surface of the ependymal cells in the third ventricle of the rat brain. In the pituitary, similar pattern of localization was also observed in the cuboidal-columnar epithelial cells that lined the par tuberalis between the anterior and intermediate lobes. The immunoreaction to the neural cells cannot be completely abolished by competition with the synthetic peptide. These observations suggested that alpha-inhibins are located in the Leydig cells of the testis as well as in the brain, pituitary and ovary.  相似文献   

9.
We cloned and sequenced the cDNA of a potent tumor transforming gene (TUTR1) from human testis and determined its primary structure. The TUTR1 cDNA is composed of 656 nucleotides and encodes a novel protein of 202 amino acids. The predicted TUTR1 protein is extremely hydrophilic and contains two proline-rich motifs at its C-terminus. Northern blot analysis of the mRNA from various human tissues and tumors revealed that TUTR1 mRNA is highly expressed in tumors of the pituitary gland, adrenal gland, ovary, endometrium, liver, uterus, and kidney as well as in cell lines derived from tumors of the pituitary, breast, endometrium, and ovary. With the exception of the testis, the levels of TUTR1 mRNA were either very low or undetectable in normal human tissues. Overexpression of TUTR1 in mouse fibroblasts (NIH 3T3) cells resulted in an increase in cell proliferation, induced cellular transformation in vitro, and promoted tumor formation in nude mice. These results suggest that TUTR1 is a novel and potent transforming gene, which may be involved in tumorigenesis in numerous different human tumors.  相似文献   

10.
11.
Reproductive biology of the relaxin-like factor (RLF/INSL3)   总被引:11,自引:0,他引:11  
The relaxin-like factor (RLF), which is the product of the insulin-like factor 3 (INSL3) gene, is a new circulating peptide hormone of the relaxin-insulin family. In male mammals, it is a major secretory product of the testicular Leydig cells, where it appears to be expressed constitutively but in a differentiation-dependent manner. In the adult testis, RLF expression is a good marker for fully differentiated adult-type Leydig cells, but it is only weakly expressed in prepubertal immature Leydig cells or in Leydig cells that have become hypertrophic or transformed. It is also an important product of the fetal Leydig cell population, where it has been demonstrated using knockout mice to be responsible for the second phase of testicular descent acting on the gubernaculum. INSL3 knockout mice are cryptorchid, and in estrogen-induced cryptorchidism, RLF levels in the testis are significantly reduced. RLF is also made in female tissues, particularly in the follicular theca cells of small antral follicles and in the corpus luteum of the cycle and pregnancy. The ruminant ovary has a very high level of RLF expression, and analysis of primary cultures of ovarian theca-lutein cells indicated that, as in the testis, expression is probably constitutive but differentiation dependent. Female INSL3 knockout mice have altered estrous cycles, where RLF may be involved in follicle selection, an idea strongly supported by observations on bovine secondary follicles. Recently, a novel 7-transmembrane domain receptor (LGR8 or Great) has been tentatively identified as the RLF receptor, and its deletion in mice leads also to cryptorchidism.  相似文献   

12.
《The Journal of cell biology》1995,129(4):1023-1032
Previous studies in transgenic mice have established the importance of the 3' untranslated region (UTR) of the spermatid-specific protamine-1 (Prm-1) mRNA in its translational control during male germ cell development. To clone genes that mediate the translational repression or activation of the Prm-1 mRNA, we screened cDNA expression libraries made with RNA from pachytene spermatocytes and round spermatids, with an RNA probe corresponding to the 3' UTR of Prm-1. We obtained six independent clones that encode Spnr, a spermatid perinuclear RNA- binding protein. Spnr is a 71-kD protein that contains two previously described RNA binding domains. The Spnr mRNA is expressed at high levels in the testis, ovary, and brain, and is present in multiple forms in those tissues. Immunolocalization of the Spnr protein within the testis shows that it is expressed exclusively in postmeiotic germ cells and that it is localized to the manchette, a spermatid-specific microtubular array. Although the Spnr protein is expressed too late to be directly involved in the translational repression of Prm-1 specifically, we suggest that the Spnr protein may be involved in other aspects of spermatid RNA metabolism, such as RNA transport or translational activation.  相似文献   

13.
Summary. Mammalian testis contains D-aspartic acid (D-Asp), which enhances testosterone production. D-Asp, on other hand, also stimulates 17β-estradiol synthesis in the ovary of some lower vertebrates. We studied boar testis in order to determine if D-Asp intervenes in 17β-estradiol synthesis in the testis of those mammals which produce significant amounts of estrogens as well as testosterone. The boar testis contains D-Asp (40 ± 3.6 nmol/g tissue) which, according to immunohistological techniques, is localized mainly in Leydig cells, and, to a lesser extent, in sustentacular (Sertoli), peritubular and some germ cells. The enzyme P450aromatase is present in Leydig cells and few germ cells. In vitro experiments showed that the addition of D-Asp to testicular tissue extracts induced a significant increase of aromatase activity, as evaluated by testosterone conversion into 17β-estradiol. The enzyme’s Km was not affected by D-Asp (about 25 nM in both control and D-Asp added tests). On the basis of these results we suggest that, as in the ovary, D-Asp is involved in the local control of aromatase activity of boar testis and, therefore, it intervenes in the 17β-estradiol production. In the testis, the D-Asp targets are presumably the Leydig cells, which having also a nuclear estrogen receptor are, in turn, one of the putative targets of the 17β-estradiol that they produce (autocrine effect).  相似文献   

14.
Summary The cytodifferentiation and subcellular steroidogenic sites in the theca cell of the human ovary during the follicular phase were investigated using the electron microscopic cytochemistry. Only fibroblast-like cells were seen around or near the primordial follicle. In the theca interna of the secondary and Graafian follicle however there were three different cell types: fibroblast-like cells, theca gland cells (steroid-secreting cells) and transitional cells (partially or incompletely differentiated theca cells). On the other hand the theca externa of these follicles consisted mainly of fibroblast-like cells. The hallmarks of the cytodifferentiation of the theca cells were: 1) the appearance of lipid droplets, 2) a structural change of the mitochondrial cristae from lamellar to tubular form and 3) the appearance and development of smooth endoplasmic reticulum. Reaction products of 3-hydroxysteroid ferricyanide reductase, indicating 3-hydroxysteroid dehydrogenase activity, were localized on tubular or lamellar cristae and inner membrane of the mitochondria, and on the membranes of smooth endoplasmic reticulum in the transitional cell as well as in the theca gland cell of the secondary and Graafian follicle. From these data, it is suggested that the transitional cell has a steroid-secreting activity and also plays an important role in follicular development in human reproduction.Supported by a grant from the Japanese Educational Ministry  相似文献   

15.
Hormone-sensitive lipase (HSL) hydrolyse acylglycerols, cholesteryl and retinyl esters. HSL is a key lipase in mice testis, as HSL deficiency results in male sterility. The present work study the effects of the deficiency and lack of HSL on the localization and expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in uptake and efflux of cholesterol in mice testis, to determine the impact of HSL gene dosage on testis morphology, lipid homeostasis and fertility. The results of this work show that the lack of HSL in mice alters testis morphology and spermatogenesis, decreasing sperm counts, sperm motility and increasing the amount of Leydig cells and lipid droplets. They also show that there are differences in the localization of HSL, SR-BI, LDLr and ABCA1 in HSL+/+, HSL+/− and HSL−/− mice. The deficiency or lack of HSL has effects on protein and mRNA expression of genes involved in lipid metabolisms in mouse testis. HSL−/− testis have augmented expression of SR-BI, LDLr, ABCA1 and LXRβ, a critical sterol sensor that regulate multiple genes involved in lipid metabolism; whereas LDLr expression decreased in HSL+/− mice. Plin2, Abca1 and Ldlr mRNA levels increased; and LXRα (Nr1h3) and LXRβ (Nr1h2) decreased in testis from HSL−/− compared with HSL+/+; with no differences in Scarb1. Together these data suggest that HSL deficiency or lack in mice testis induces lipid homeostasis alterations that affect the cellular localization and expression of key receptors/transporter involved in cellular cholesterol uptake and efflux (SR-BI, LDRr, ABCA1); alters normal cellular function and impact fertility.  相似文献   

16.
The development of male and female gonads in arrhenotokous and thelytokous species of Histiostoma was studied using transmission electron microscopy (TEM). All instars were examined: larvae, protonymphs, facultative heteromorphic deutonymphs (=hypopi), tritonymphs, and adults. In testis primordium, spermatogonia surrounding a testicular central cell (TCC) with a gradually enlarging, branched nucleus are present already at the larval stage. Spermatogonia and the TCC are connected via narrow, tubular intercellular bridges revealing that the TCC is a germline cell. Spermatocytes appear at the protonymphal stage. At the heteromorphic deutonymph stage, the testis primordium is similar to that of the protonymph, but in the tritonymph it is much larger and composed as in the adult: spermatids as well as sperm cells are present. The latter are congregated ventrally in the testis at the entrance of the deferent duct.In the larval ovary, an eccentrically located ovarian nutritive cell (ONC) is surrounded by oogonia which are connected with the ONC via tubular intercellular bridges. In later stages, the ovary grows and oocytes appear in the protonymph. Meiotic synaptonemal complexes in oocytes occur from the tritonymph stage. At about the time of the final molting, tubular intercellular bridges transform into peculiar diaphragm-crossed bridges known only in Histiostoma mites. In the adult female, growing oocytes at the end of previtellogenesis lose intercellular bridges and move ventro-laterally to the ovarian periphery towards the oviduct entrance. Vitellogenesis occurs in oviducts.Germinal cells in both the testis and ovary are embedded in a few somatic stroma cells which may be well discernible already in the larval ovary; in the testis, somatic stroma cells are evident not earlier than the end of the tritonymphal stage. The ovary has a thin wall of flat somatic cells, whereas the testis is covered by a basal lamina only.The obtained results suggest that gonads in Histiostoma and other Astigmata originate from two primordial cells only.  相似文献   

17.
In mammals, testis determination is initiated when the SRY gene is expressed in pre-Sertoli cells of the undifferentiated genital ridge. SRY directs the differentiation of these cells into Sertoli cells and initiates the testis differentiation pathway via currently ill-defined mechanisms. Because Sertoli cells are the first somatic cells to differentiate within the developing testis, it is likely that the signals for orchestrating testis determination are expressed within pre-Sertoli cells. We have previously generated a transgenic mouse line that expresses green fluorescent protein under the control of the pig SRY promoter, thus marking pre-Sertoli cells via fluorescence. We have now used suppression-subtractive hybridization (SSH) to construct a normalized cDNA library derived from fluorescence-activated cell sorting (FACS) purified pre-Sertoli cells taken from 12.0 to 12.5 days postcoitum (dpc) fetal transgenic mouse testes. A total of 35 candidate cDNAs for known genes were identified. Detection of Sf1, a gene known for its role in sex determination as well as Vanin-1, Vcp1, Sparc, and Aldh3a1, four genes previously identified in differential screens as gene overexpressed in developing testis compared with ovary, support the biological validity of our experimental model. Whole-mount in situ hybridization was performed on the 35 candidate genes for qualitative differential expression between male and female genital ridges; six were upregulated in the testis and one was upregulated in the ovary. The expression pattern of two genes, Ppt1 and Brd3, were examined in further detail. We conclude that combining transgenically marked fluorescent cell populations with differential expression screening is useful for cell expression profiling in developmental systems such as sex determination and differentiation.  相似文献   

18.
According to the classical paradigm, the vasculature of the embryonic testis is more dense and complex than that of the ovary, but recent studies based on whole-mount detection of Caveolin-1 (CAV1) as an endothelial cell marker, have suggested that the level of ovarian vascularization is higher than previously assumed. However, this new hypothesis has been neither tested using alternative methodology nor investigated in other mammalian species. In this paper, we have studied the vascularization process in the gonads of males and females of two mammalian species, the mouse (Mus musculus) and the Iberian mole (Talpa occidentalis). Our results show that the pattern of testis vascularization is very well conserved among mammals, including both pre- and postnatal stages of development and, at least in the mole, it is conserved irrespectively of whether the testicular tissue is XY or XX. We have shown that CAV1 is present not only in endothelial cells but also in prefollicular oocytes and in an ovarian population of somatic cortical cells. These data clearly establish that: (1) according to the classical hypothesis, the degree of vascularization of the developing ovary is lower than that of the testis, (2) ovarian vascularization is also evolutionarily conserved as it occurs similarly both in moles and in mice, and (3) that the degree of vascular development of the mammalian ovary is age-dependent increasing significatively at puberty. The expression of CAV1 in the ovary of most animal taxa, from nematodes to mammals, strongly suggests a role for this gene in the female meiosis.  相似文献   

19.
A spontaneous case of true lateral hermaphroditism was observed in one of approximately 1000 necropsies of 12-wk-old female C3Hf-Wg mice (a substrain of C3H/He). Both the right ovary and abdominal left testis were functional as evidenced by the presence of oocytes in graffian follicles and spermatocytes maturing on sertoli cells. Both gonads communicated, the ovary via an oviduct and normal right uterine horn and the testis via an epididymus and vas deferens, with a vagina which ended in a blind pouch and was filled with squamous debris.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号