首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of experiments were carried out in order to elucidate whether acetylsalicylic acid (ASA) fed via petioles to beans could affect transpiration rate. In comparison with the water control it was found that a 10?3M ASA reduces transpiration as much as 43%, a reduction equivalent to 5 × 10?5M abscisic acid (ABA). Preliminary kinetics on the ABA, ASA and the water control on transpiration rate are presented and the results discussed.  相似文献   

2.
Munns R  King RW 《Plant physiology》1988,88(3):703-708
Xylem sap was collected from the transpiration stream of wheat (Triticum aestivum L.) plants and assayed for the presence of an inhibitor of transpiration using leaves detached from well-watered plants. Transpiration of detached leaves was reduced by nearly 60% by sap collected from plants in drying soil, and to a lesser extent (about 25%) by sap from plants in well-watered soil. As the soil dried the abscisic acid (ABA) concentration in the sap increased by about 50 times to 5 × 10−8 molar. However, the ABA in the sap did not cause its inhibitory activity. Synthetic ABA of one hundred times this concentration was needed to reduce transpiration rates of detached leaves to the same extent. Furthermore, inhibitory activity of the sap was retained after its passage through an immunoaffinity column to remove ABA. Xylem sap was also collected by applying pressure to the roots of plants whose leaf water status was kept high as the soil dried. Sap collected from these plants reduced transpiration to a lesser extent than sap from nonpressurised plants. This suggests that the inhibitory activity was triggered partly by leaf water deficit and partly by root water deficit.  相似文献   

3.
The growth of wheat seedlings (Triticum sativum) is inhibited by abscisic acid (ABA). The inhibition increases with the concentration of ABA (from 10-6M to 5 × 10-5M) and is stronger in the case of coleoptiles and first leaves than in roots. In contrast, naphthaleneacetic acid (ANA), at 10-5M, exerts its greatest inhibitory effect on the roots. The inhibitory effect of ABA on coleoptiles can be partially overcome by kinetin and to a much smaller degree by gibberellic acid. Neither of these two compounds, at 10-5M, had any effect on the ABA-induced inhibition of root growth. The RNA and DNA contents per plant organ are considerably reduced after treatment of the seedlings with ABA, particularly in the coleoptiles and the first leaves. The incorporation of uracil-2-14C and uridine T (G) into RNA of treated seedlings is reduced in the case of coleoptiles and first leaves, but considerably enhanced in roots. The mechanism of the action of ABA is discussed in the light of these results.  相似文献   

4.
Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi‐arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild‐type plants upon B‐toxicity treatment. The Arabidopsis ABA‐deficient nced3‐2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild‐type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild‐type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3‐2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild‐type and nced3‐2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA.  相似文献   

5.
Rapid Effects of Abscisic Acid on Ion Uptake in Sunflower Roots   总被引:1,自引:0,他引:1  
Short-term effects of ABA, ABA + kinetin and kinetin on ion (86Rb-potassium and phosphate) and water uptake in sunflower plants (Helianthus annuus var. californicus) were examined with a continuous-recording technique. Ion uptake in the roots and transport to the shoots were also investigated by conventional tracer uptake experiments and by sap bleeding experiments with excised roots. After addition of 5 × 10?6-4 × 10?5M ABA to the root medium there was an immediate decrease (30–70%) in the rate of ion uptake which lasted 30–70 min. The rate of water uptake was not significantly affected as measured with this method. Ion transport to the shoots and to the bleeding sap of excised roots was decreased by ABA. ABA-induced inhibition of ion uptake was abolished by the presence of kinetin, and uptake was slightly stimulated by 2 × 10?5M kinetin alone. We suggest that concentration gradients of ABA or rapid changes in the ABA-kinetin balance in the roots affect ion uptake and transport.  相似文献   

6.
Genetic variants for abscisic acid (ABA) sensitivity are important for investigating the role of ABA sensitivity in conditioning plant response to environmental stress, and especially to those soil conditions that may elicit a root-mediated hormonal signal. This study was performed in order to isolate variation in ABA sensitivity among wheat (Triticum aestivum and T. durum) cultivars, as characterized by two plant responses: (i) shoot growth reduction in response to 5×10?2mol m?3 ABA (racemic) in the root medium of hydroponically grown plants, and (ii) changes in transpiration and gas exchange in a bioassay of detached leaves (leaflaminac) infused with 10?4mol m?3 ABA. Very significant (P≤0.01) and repeatable differences were found among 36 wheat cultivars and 19 landraces in the growth rate in ABA-containing nutrient solutions, expressed as a percentage of the growth rate in control nutrient solutions (ABA/control ratio). In duplicate experiments, the ABA/control ratio ranged between 60 and 83% for the least sensitive cultivars (V2151-3, Bethlehem, K1056 and Sunstar) and between 9 and 19% for the most sensitive cultivars (Sundor, Comet, Barkaec and V5). In the transpiration bioassay, performed with seven selected cultivars, it was found that the reductions in transpiration of ABA-infused leaves corresponded very well with the reductions in growth in response to ABA in the root media. Measurement of gas exchange in the detached leaves of two cultivars differing in ABA sensitivity (Bethlehem and Sundor) showed that variable ABA sensitivity was expressed very well in the stomatal conductance, carbon exchange rate (CER) and photosynthetic capacity (CER/Ci ratio) of the leaf. These results therefore allowed us to isolate wheat variants for ABA sensitivity and to conclude that, while ABA sensitivity is expressed in the growth of plants challenged by ABA in the root medium, the control of sensitivity resides, at least partly, in the leaf.  相似文献   

7.
Photosynthesis and transpiration of excised leaves of Taraxacum officinale L. and a few other species of plants were measured, using an open gas analysis system. The rates of CO2 uptake and transpiration increased in two steps upon illumination of stomata-bearing epidermis of these leaves at a light intensity of 50 mW × cm−2. Abscisic acid inhibited only the second step of gas exchange. Illumination of the astomatous epidermis of hypostomatous leaves caused only the first step of gas exchange. These data indicate that the first and second steps arise from cuticular and stomatal gas exchange, respectively. The rate of the cuticular photosynthesis in a Taraxacum leaf reached saturation at a light intensity of 5 mW × cm−2, and the rates of the stomatal photosynthesis and transpiration reached saturation at a higher intensity of 35 mW × cm−2. The cuticular photosynthesis of a Taraxacum leaf was 18% of the stomatal photosynthesis at 50 mW × cm−2 and 270% at 5 mW × cm−2. The other species of leaves showed the same trend. The importance of cuticular CO2 uptake in leaf photosynthesis, especially under low light intensity was stressed from these data.  相似文献   

8.
Gas exchange and abscisic acid content of Digitalis lanata EHRH. have been examined at different levels of plant water stress. Net photosynthesis, transpiration and conductance of attached leaves declined rapidly at first, then more slowly following the withholding of irrigation. The intercellular partial pressure of CO2 decreased slightly. The concentration of 2-cis(S)ABA increased about eight-fold in the leaves of non-irrigated plants as compared with well-watered controls. A close linear correlation was found between the ABA content of the leaves and their conductance on a leaf area basis. In contrast, the plot of net assimilation versus ABA concentration was curvilinear, leading to an increased efficiency of water use during stress. After rewatering, photosynthesis reached control values earlier than transpiration, leaf conductance and ABA content. From these data it is concluded that transpiration through the stomata is directly controlled by the ABA content, whereas net photosynthesis is influenced additionally by other factors.Possible reasons for the responses of photosynthesis and water use efficiency to different stress and ABA levels are discussed.Abbreviations A net CO2 assimilation - ABA abscisic acid - Ci intercellular CO2 concentration - g stomatal conductance - T transpiration - WUE water use efficiency  相似文献   

9.

Background and aims

Soil drying leads to the generation of chemical signals in plants that regulate water use via control of the stomatal aperture. The aim of our work was to identify the presence and identity of potential chemical signals, their dynamics, and their relationship with transpiration rate during soil drying in hop (Humulus lupulus (L.)) plants.

Methods

We used pressure chamber technique for measurement of shoot water potential and collection of shoot xylem sap. We analyzed concentrations of abscisic acid (ABA), nitrate, phosphate, sulphate and malate in sap and also the rate of whole plant transpiration.

Results

Transpiration rate decreased prior to changes in shoot water potential. The concentration of ABA in xylem sap continuously increased from early to later stages of water stress, whereas in leaves it increased only at later stages. Shoot sap pH increased simultaneously with the decrease of transpiration rate. Xylem sap alkalization was in some cases accompanied by a decrease in nitrate concentration and an increase in malate concentration. Concentration of sulphate increased in xylem sap during drying and sulphate in combination with a higher ABA concentration enhanced stomatal closure.

Conclusions

Several early chemical signals appear in sap of hop plants during soil drying and their impact on transpiration may vary according to the stage of soil drying.  相似文献   

10.
Unifoliate leaves were individually enclosed in clear, plastic chambers for the 24 hour treatment periods and then sacrificed for Ca analysis. Two transpiration rates were obtained by passing dry air through the chambers tising flow rates of 160 and 260 cm3/min. A third rate was obtained by a combination of shade and the lower air flow rate. Neither the transpiration rate nor solution-Ca concentration (0.5mM and 2.5 mM of 0.1, and 0.5 strength Hoagland solution) altered the amount of Ca deposited in the unifoliate leaves of 22 day old bean plants (Phaseolus vulgaris). The transpiration rate per unit area of leaf remained constant for all ages studied (1l–20 days) and was 1.8, 2.7, 3.6 g H2O per dm2 day for the three different imposed conditions. A definite pattern of Ca deposition occurred. With all the transpiration rates there was a maximum rate of calcium deposition at 13 days of growth and a gradual decrease thereafter. When the Ca concentration of the nutrient solution was 20 μg/ml the daily Ca deposition in terms of water transpired by the unifoliate leaves exceeded this amount, except for the oldest leaf tested, and, the maximum Ca to water ratios were 250, 320, and 430 (μg Ca/g) in order of decreasing transpiration rates. The uptake of Ca against a concentration gradient and approximately the same total uptake regardless of transpiration rates and solution concentrations used, firmly suggest that Ca secretion into root-xylem elements from a surrounding low level Ca solution requires energy expenditure by the plant. A possible explanation was proposed for the decreased rate of Ca deposition by the unifoliate leaves subsequent to the 13th day.  相似文献   

11.
Experiments were conducted on14C-sorbitol, fructose, and glucose uptakeinto flesh discs, and sorbitol efflux from thediscs, with and without ABA application toexamine the effect of abscisic acid (ABA) onsugar accumulation in peach fruit flesh at thestart of the maturation stage in relation tomembrane transport. Total uptake of14C-sorbitol, fructose, and glucose intoflesh discs was effectively promoted by ABA ata concentration of 10–5 M. PCMBS(p-chloromercuribenzensulfonicacid)-sensitive uptake, which was considered ascarrier-mediated uptake, of sorbitol into thediscs was clearly stimulated by ABA at10–5 M, compared with glucose andfructose uptake. Sorbitol efflux from the discsacross the tonoplast was restricted by ABA at10–5 M. ABA application todeveloping fruit increased sugar accumulationin the fruit. Estimated ABA concentration inthis fruit was approximately 10–5 M. These results indicate that sugar accumulationin peach fruit flesh is stimulated by ABA at aconcentration of 10–5 M both invitro and in vivo. ABA stimulatesuptake of sugars, especially sorbitol, into theflesh by enhancing carrier-mediated transportpossibly across both tonoplast and plasmamembrane.  相似文献   

12.
Increased leaf phosphorus (P) concentration improved the water-use efficiency (WUE) and drought tolerance of regularly defoliated white clover plants by decreasing the rate of daily transpiration per unit leaf area in dry soil. Night transpiration was around 17% of the total daily transpiration. The improved control of transpiration in the high-P plants was associated with an increased individual leaf area and WUE that apparently resulted from net photosynthetic assimilation rate being reduced less than the reductions in the transpiration (27% vs 58%). On the other hand, greater transpiration from low-P plants was associated with poor stomatal control of transpirational loss of water, less ABA in the leaves when exposed to dry soil, and thicker and smaller leaf size compared with high-P leaves. The leaf P concentration was positively related with leaf ABA, and negatively with transpiration rates, under dry conditions ( P < 0.001). However, leaf ABA was not closely related to the transpiration rate, suggesting that leaf P concentration has a greater influence than ABA on the transpiration rates.  相似文献   

13.
This work examined the effects of exogenously applied abscisic acid (ABA) on the content of chlorophyll, carotenoids, α-tocopherol, squalene, phytosterols, Δ9-tetrahydrocannabinol (THC) concentration, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS) activity in Cannabis sativa L. at flowering stage. Treatment with 1 and 10 mg l−1 ABA significantly decreased the contents of chlorophyll, carotenoids, squalene, stigmasterol, sitosterol, and HMGR activity in female cannabis plants. ABA caused an increase in α-tocopherol content and DXS activity in leaves and THC concentration in leaves and flowers of female plants. Chlorophyll content decreased with 10 mg l−1 ABA in male plants. Treatment with 1 and 10 mg l−1 ABA showed a decrease in HMGR activity, squalene, stigmasterol, and sitosterol contents in leaves but an increase in THC content of leaves and flowers in male plants. The results suggest that ABA can induce biosynthesis of 2-methyl-d-erythritol-4-phosphate (MEP) pathway secondary metabolites accumulation (α-tocopherol and THC) and down regulated biosynthesis of terpenoid primary metabolites from MEP and mevalonate (MVA) pathways (chlorophyll, carotenoids, and phytosterols) in Cannabis sativa.  相似文献   

14.
Petioles of water‐sufficient intact Vicia faba L. plants were infused with 1 µm abscisic acid (ABA) to simulate the import of root‐source ABA. This protocol permitted quantitative ABA delivery, up to 300 pmol ABA over 60 min, to the leaf without ambiguities associated with perturbations in plant–water status. The ABA concentrations in whole‐leaf samples and in apoplastic sap increased with the amount infused; ABA degradation was not detected. The ABA concentration in apoplastic sap was consistent with uptake of imported ABA into the leaf symplast, but this interpretation is qualified. Our focus was quantitative cellular compartmentation of imported ABA in guard cells. Unlike when leaves are stressed, the guard‐cell symplast ABA content did not increase because of ABA infusion (P = 0·48; 3·0 ± 0·5 versus 4·0 ± 1·2 fg guard‐cell‐pair?1). However, the guard‐cell apoplast ABA content increased linearly (R2 = 0·98) from ?0·2 ± 0·5 to 3·1 ± 1·3 fg guard‐cell‐pair?1 (≈ 3·1 µm ) and was inversely related to leaf conductance (R2 = 0·82). Apparently, xylem ABA accumulates in the guard‐cell wall as a result of evaporation of the apoplast solution. This mechanism provides for integrating transpiration rate and ABA concentration in the xylem solution.  相似文献   

15.
Excised leaves of silver maple (Acer saccharinum L.) exposed to 0, 0.045, 0.090, or 0.180 mM Cd24 exhibited reduced net photosynthesis and transpiration, and increased dark respiration. Rates of net photosynthesis and transpiration diminished with time and were strongly correlated with solution concentration and tissue content of Cd24, Net photosynthesis and transpiration were reduced to 18 and 21%, respectively, of the untreated controls after 64 h. Dark respiration increased as much as 193% of the untreated controls but was poorly correlated with solution concentration or tissue content of Cd24, Diffusive resistances of leaves to carbon dioxide and water vapor transfer increased with both increasing Cd24 concentration and time. These findings are discussed in relation to stomatal function.  相似文献   

16.
Mg-chelatase H subunit (CHLH) is a multifunctional protein involved in chlorophyll synthesis, plastid-to-nucleus retrograde signaling, and ABA perception. However, whether CHLH acts as an actual ABA receptor remains controversial. Here we present evidence that CHLH affects ABA signaling in stomatal guard cells but is not itself an ABA receptor. We screened ethyl methanesulfonate-treated Arabidopsis thaliana plants with a focus on stomatal aperture-dependent water loss in detached leaves and isolated a rapid transpiration in detached leaves 1 (rtl1) mutant that we identified as a novel missense mutant of CHLH. The rtl1 and CHLH RNAi plants showed phenotypes in which stomatal movements were insensitive to ABA, while the rtl1 phenotype showed normal sensitivity to ABA with respect to seed germination and root growth. ABA-binding analyses using 3H-labeled ABA revealed that recombinant CHLH did not bind ABA, but recombinant pyrabactin resistance 1, a reliable ABA receptor used as a control, showed specific binding. Moreover, we found that the rtl1 mutant showed ABA-induced stomatal closure when a high concentration of extracellular Ca2+ was present and that a knockout mutant of Mg-chelatase I subunit (chli1) showed the same ABA-insensitive phenotype as rtl1. These results suggest that the Mg-chelatase complex as a whole affects the ABA-signaling pathway for stomatal movements.  相似文献   

17.
C. M. Willmer  R. Don  W. Parker 《Planta》1978,139(3):281-287
Straight-chain saturated fatty acids (C6-C11) and abscisic acid (ABA) accumulate in the leaves of Phaseolus vulgaris L. and Hordeum vulgare L. under water stress. ABA and certain of the fatty acids, particularly decanoic and undecanoic acid, can inhibit stomatal opening and cause stomatal closure in epidermal strips of Commelina communis L. depending on the incubating medium used. 10-4 M (±)-ABA inhibits opening in media containing either high or relatively low concentrations of KCl but causes closure only in the latter medium. The fatty acids (at 10-4 M) prevent opening in both media while significant closure of open stomata was caused only by undecanoic acid in both media and, additionally, by decanoic acid in the low-KCl medium. 10-4 M formic acid also caused stomatal closure and prevented opening to significant extents in the low-KCl medium (it was not tested in the high-KCl medium). The efficacy of undecanoic acid in causing 50% inhibition of opening is about three orders of magnitude lower than that of ABA. At a concentration of 10-3 M, nonanoic, decanoic and particularly undecanoic acid and all-trans-farnesol cause increased cell leakage in Beta vulgaris L. root tissue. Undecanoic acid (10-4 M) also causes some loss of guard cell integrity in C. communis within 1.5 h of treatment. ABA (10-4 M) reduces transpiration rates in barley and C. communis leaves when applied via the transpiration stream but decanoic and undecanoic acids did not have this effect. Transpiration was not affected when ABA or the fatty acids were applied to the leaf surfaces.Abbreviations ABA abscisic acid - RWC relative water content - SCFA short-chain fatty acids Deceased May 1977  相似文献   

18.
Photosynthesis and transpiration rate of detached leaves of pea (Pisum sativum L. cv. Iłowiecki) exposed to solution of Pb(NO3)2 at 1 or 5 mmol·dm−3 concentrations were inhibited. The higher concentration of this toxicant decreased photosynthesis and transpiration rates 2 and 3 times respectively, and increased respiration by about 20 %, as measured after 24 hours of treatment. Similarly to Pb(NO3)2, glyceraldehyde solution, an inhibitor of phosphoribulokinase, at 50 mmol·dm−3 concentration decreased the rates of photosynthesis and transpiration during introduction into pea leaves. The rate of dark respiration, however, remained unchanged during 2 hours of experiment. The potential photochemical efficiency of PS II (Fv/Fm) and the activity of Rubisco (EC 4.1.1.39) at 5 mmol·dm−3 of Pb(NO3)2 were lowered by 10 % and 20 % respectively, after 24 hours. Neither changes in the activity of PEPC (EC 4.1.1.31) or protein and pigment contents were noted in Pb-treated leaves. The photosynthetic activity of protoplasts isolated from leaves treated for 24 or 48 hours with Pb(NO3)2 at 5 mmol·dm−3 concentration was decreased 10 % or 25 %, whereas, the rate of dark respiration was stimulated by about 40 % and 75 %, respectively. The content of abscisic acid, a hormone responsible for stomatal closure, in detached pea leaves treated for 24 h with 5 mmol·dm−3 of Pb(NO3)2 solution was increased by about 3 times; a longer (48h) treatment led to further increase (by about 7 times) in the amount of this hormone. The results of our experiments provide evidences that CO2 fixation in detached pea leaves, at least up to 24 hours of Pb(NO3)2 treatment, was restricted mainly by stomatal closure.  相似文献   

19.
The aim of this research was to determine whether exogenous abscisic acid (ABA) applied immediately after ex vitro transfer of in vitro grown plants can improve their acclimatization. Tobacco (Nicotiana tabacum L.) plantlets were transferred into pots with Perlite initially moistened either by water or 50 μM ABA solution and they were grown under low (LI) or high (HI) irradiance of 150 and 700 μmol m−2 s−1, respectively. Endogenous content of ABA in tobacco leaves increased considerably after ABA application and even more in plants grown under HI. Stomatal conductance, transpiration rate and net photosynthetic rate decreased considerably 1 d after ex vitro transfer and increased thereafter. The gas exchange parameters were further decreased by ABA application and so wilting of these plants was limited. Chlorophyll (a+b) and β-carotene contents were higher in ABA-treated plants, but the content of xanthophyll cycle pigments was not increased. However, the degree of xanthophyll cycle pigments deepoxidation was decreased what also suggested less stress in ABA-treated plants. No dramatic changes in most chlorophyll a fluorescence parameters after ex vitro transfer suggested that the plants did not suffer from restriction of electron transport or photosystem damage.  相似文献   

20.
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号