首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract Previous reports from our laboratory have demonstrated that peripheral blood monocytes (PBM) from HIV-1 infected individuals are de novo activated and are cytotoxic in vitro. Significant monocyte-antibody-dependent cellular cytotoxicity (ADCC) was obtained against HIV-1 inactivated CD4+ CEM target cells coated with HIV-1 in the presence of autologous seropositive serum. Based on these findings, we hypothesized that in HIV-seropositive individuals the monocytes may play an important role in vivo in the autodestruction of non-infected CD4+ T lymphocytes. The present study was designed to test this hypothesis. Monocytes from normal donors activated with M-CSF lysed CD4+ T cells (CEM) coated with gp120 sensitized by plasma from asymptomatic HIV-1+ individuals in a 8 h 51Cr release assay. ADCC cytotoxic activity varied from one individual to another and was a function of the dilution of the individual seropositive plasma used. We then used circulating CD3+ T lymphocytes as targets for ADCC following treatment with actinomycin D to facilitate the release of radioactive 51Cr. Like CEM, ADCC was obtained with CD3+ T cells coated with gp120 in the presence of HIV seropositive plasma and monocytes. Lysis was specific as T cells that were not coated with gp120 were not destroyed. These findings demonstrate that activated peripheral blood derived monocytes can destroy non-infected gp120-coated circulating T lymphocytes by an ADCC-mediated mechanism. Thus, these findings suggest that ADCC may be one mechanism operating in vivo for the destruction of non-infected CD4+ T lymphocytes.  相似文献   

3.
Protein A, a cell wall constituent of several strains of Staphylococcus aureus, binds strongly to the Fc portion of immunoglobulins. This investigation demonstrated that such binding can inhibit antibody-dependent cellular cytotoxicity (ADCC). The degree to which ADCC was inhibited depended upon the relative concentrations of protein A and anti-target cell antiserum. Protein A also inhibited the formation of rosettes between antibody-coated sheep red blood cells and lymphoid cells with Fc receptors. We, therefore, conclude that protein A inhibits ADCC by preventing the binding of antibody-coated target cells to Fc receptors on cytotoxic effector cells.  相似文献   

4.
Antibody-dependent cellular cytotoxicity (ADCC) to tumor targets was studied using murine resident peritoneal macrophages and a macrophage cell line RAW264.10A, both having low inherent cytolytic activity. The target was 125I-labeled pre-B lymphoma 18-8. Pretreatment of both macrophage populations with 0.5 – 2 μM concentrations of the microtubule-stabilizing drug taxol greatly increased their antibody-dependent cytotoxicity with no stimulation of nonspecific killing. Taxol present only during the 18-hr cytolytic assays had no effect on target killing. Optimal killing activity was obtained by treating macrophages 2 days with taxol, similar to previously described cytokine stimulation of ADCC. This concentration completely blocked growth of RAW264 cells. Other microtubule inhibitors, lidocaine and colchicine, also augmented peritoneal and cell line macrophage ADCC at cytostatic concentrations. In contrast, the microfilament-disrupting agent, cytochalasin B, caused little or no stimulation of ADCC. These results show that microtubule reformation is not necessary for the development of cytotoxicity. Since microtubule inhibitors block lysosomal discharge, they may stimulate macrophage ADCC by causing accumulation of toxic molecules involved in cytotoxicity.  相似文献   

5.
The National Cancer Institute (NCI) Human Tumor Cell Line Anti-Cancer Drug Screen has evaluated the cytotoxicity profiles of a large number of synthetic compounds, natural products, and plant extracts on 60 different cell lines. The data for each compound/extract can be assessed for similarity of cytotoxicity pattern, relative to a given test compound, using an algorithm called COMPARE. In applying a chemical biology approach to better understand the mechanism of eukaryotic protein synthesis, we used these resources to search for novel inhibitors of translation. The cytotoxicity profiles of 31 known protein synthesis inhibitors were used to identify compounds from the NCI database with similar activity profiles. Using this approach, two natural products, phyllanthoside and nagilactone C, were identified and characterized as novel protein synthesis inhibitors. Both compounds are specific for the eukaryotic translation apparatus, function in vivo and in vitro, and interfere with translation elongation. Our results demonstrate the feasibility of utilizing cytotoxicity profiles to identify new inhibitors of translation.  相似文献   

6.
Unconjugated mAbs have emerged as useful cancer therapeutics. Ab-dependent cellular cytotoxicity (ADCC) is believed to be a major antitumor mechanism of some anticancer Abs. However, the factors that regulate the magnitude of ADCC are incompletely understood. In this study, we described the relationship between Ab affinity and ADCC. A series of human IgG1 isotype Abs was created from the anti-HER2/neu (also named c-erbB2) C6.5 single-chain Fv (scFv) and its affinity mutants. The scFv affinities range from 10(-7) to 10(-11) M, and the IgG Abs retain the affinities of the scFv from which they were derived. The apparent affinity of the Abs ranged from nearly 10(-10) M (the lowest affinity variant) to almost 10(-11) M (the other variants). The IgG molecules were tested for their ability to elicit ADCC in vitro against three tumor cell lines with differing levels of HER2/neu expression using unactivated human PBMC from healthy donors as the effector cells. The results demonstrated that both the apparent affinity and intrinsic affinity of the Abs studied regulate ADCC. High-affinity tumor Ag binding by the IgGs led to the most efficient and powerful ADCC. Tumor cells expressing high levels of HER2/neu are more susceptible to the ADCC triggered by Abs than the cells expressing lower amounts of HER2/neu. These findings justify the examination of high affinity Abs for ADCC promotion. Because high affinity may impair in vivo tumor targeting, a careful examination of Ab structure to function relationships is required to develop optimized therapeutic unconjugated Abs.  相似文献   

7.
The cellular events accompanying neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) directed against YAC erythroleukemic target cells have been studied by time-lapse fluorescence-intensified microscopy. The YAC plasma membrane and cytosol were labeled with the fluorescent probes diC18Icc and eosin Y, respectively. Fluorescently labeled and IgG-opsonized YAC cells were incubated at 37 degrees C while observed by optical microscopy. During temporal studies of neutrophil-YAC conjugates, the cytosol of YAC cells accumulated in tubular and spherical compartments of the neutrophils' vacuolar apparatuses. To distinguish between several possible mechanisms of target cytosol uptake, diC18Icc-labeled YAC cells were observed during identical conditions. The membrane label diC18Icc was found to accumulate within neutrophils in an identical fashion. At roughly 30 min, 25 and 38% of neutrophils in apparent conjugates had internalized tumor cell cytosol or plasma membrane, respectively, within a vesicular compartment. The IgG-dependent uptake of eosin Y and diC18Icc by neutrophils was diminished by exposure to 2.5 mM sodium azide. When cells were exposed to 5.5 mM sodium azide, 1 mM iodoacetamide, or 4 degrees C, conjugate formation and uptake of eosin Y or diC18Icc were abolished. An artifactual accumulation of eosin Y or diC18Icc in neutrophils was further ruled out by control studies. Non-specific exchanges of eosin Y and diC18Icc labels of YAC cells with tannic acid-treated red blood cells (RBCs) and normal neutrophils were studied. Since hemoglobin binds tightly to eosin Y, RBCs can easily detect eosin Y leakage. No exchange of eosin Y or diC18Icc from YAC cells into bound tannic acid-treated erythrocytes was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In an attempt to identify parasite antigen-specific antibody isotype(s) mediating inhibition of growth in vitro, we tested unfractionated sera and their corresponding purified antibody isotype-containing fractions in in vitro assays with asexual-stage parasites of Plasmodium falciparum in the presence or absence of monocytes. Using affinity purification techniques we fractionated individual and pooled serum samples from semi-immune Gabonese adults, to obtain samples containing either IgG1, 2, 3, and 4, IgG1, 2, and 4, or IgG3 alone, and a non-IgG fraction. Antibodies were quantified spectrophotometrically and the presence of different isotypes in individual fractions was confirmed by protein gel electrophoresis. In the absence of monocytes, we observed inhibition of parasite growth with whole serum and varying levels of either growth enhancement or inhibition with purified Ig-containing fractions. When used in a standardized assay of antibody-dependent cellular inhibition (ADCI) with a monocyte:infected erythrocyte ratio of 1:1, seven of eight serum samples inhibited growth to a mean level of 42%, and the different Ig-containing fractions displayed varying mean levels of inhibition: IgG3, 44%; IgG1--4, 22%; IgG1, 2, and 4, 10%; and non-IgG, - 10%. The results suggest that, among the different isotypes present in the serum of semi-immune individuals, parasite antigen-specific IgG3 in particular may play an important role in controlling parasitemia via an ADCI mechanism involving monocyte- derived mediators.  相似文献   

9.
10.
NK cells, CD3- large granular lymphocytes, have diverse means by which they lyse targets, including antibody-dependent cellular cytotoxicity. The low affinity receptor for the Fc portion of Ig (Fc gamma RIIIA), like the TCR, is a multimeric receptor complex coupled to a protein tyrosine kinase. In the present study, we observed that inhibition of tyrosine kinase activity by herbimycin A interferes with receptor-mediated phosphorylation of a variety of substrates and mobilization of intracellular calcium. Fc gamma RIIIA induced IL-2R alpha-chain expression was also extremely sensitive to herbimycin A as was antibody-dependent cellular cytotoxicity, in fact more so than receptor-mediated phosphorylation and calcium mobilization. In contrast to Fc gamma RIIIA, the surface molecules and biochemical mechanisms involved in NK cytotoxicity and lymphokine-activated killing are not well characterized. Interestingly, however, herbimycin A also blocks these modes of cytolysis, implicating a role for tyrosine kinase function in these processes. Whether FcR-mediated signaling and receptor-mediated signaling involved in NK activity share specific biochemical intermediates is not known, but the involvement of tyrosine kinase function in the latter means of cytotoxicity may provide novel avenues for understanding the biochemical basis of this perplexing cellular function.  相似文献   

11.
The mechanisms of cytotoxicity by porcine pulmonary alveolar macrophages (PAM) involved in antibody-dependent cellular cytotoxicity (ADCC) and immobilized immune complex-dependent cellular cytotoxicity (IIC-DCC) were investigated. The results indicate that IIC-DCC was inhibited by both catalase and thioglycollate broth whereas these peroxide scavengers had no effect on ADCC in an 18-hr chromium-release assay. Furthermore, it was found that when the PAM and red blood cell targets were cross-linked with PHA, catalase still completely eliminated IIC-DCC and had no effect on ADCC, which suggests that catalase is able to penetrate the lytic site when the effector and targets are cross-linked as in ADCC. The presence of cytochalasin B, which inhibits internalization of immune complexes by PAM and presumably prevents intracellular killing, also had no effect on the differential susceptibility of IIC-DCC and ADCC to catalase. Finally, it is shown that the nonspecific cytotoxicity generated by exposing PAM to immune complexes in suspension in conjunction with cytochalasin B, so that the immune complex-bound Fc receptor (FcR) cannot be internalized, also was susceptible to catalase. These data show that the lytic mechanism involved in the nonspecific cytotoxicity generated by exposing PAM to immobilized immune complexes or immune complexes in suspension in conjunction with cytochalasin B, both of which prevent the internalization of immune complex-bound FcR, is mediated solely by peroxide whereas the lytic mechanism involved in ADCC operates, at least partially, through a peroxide-independent mechanism.  相似文献   

12.
Recent investigations have indicated that the OKM1 hybridoma monoclonal antibody reactive with cells of the myelomonocytic series identifies a subpopulation of human peripheral blood mononuclear cells (PBMNC) which mediate natural and antibody-dependent cellular cytotoxicity (ADCC). However, it was not clear whether this OKM1+ group was heterogeneous with regard to cytotoxic function or the presence of receptors for sheep erythrocytes. Thus, the purpose of the present study was to further define the phenotype of the ADCC effector cell and natural killer (NK) cell using a combination of reactivity with hybridoma antibodies and separation of subsets by sheep erythrocyte rosette (E+) formation. Furthermore, the phenotypes of the NK population were assessed directly by performing two-color immunofluorescent staining on tumor cell conjugates. These studies led to the following conclusions: (1) that NK activity is mediated by both E+ OKM1+ and E- OKM1+ cells; the E+ OKT3+ cell possessed essentially no ADCC or NK activity; (2) that E+ OKM1+ cells mediated more NK activity on a per cell basis than E- OKM1+ cells; this was verified by separating OKM1+ cells on a cell sorter into E+ and E- with the OKT11 monoclonal antibody (anti-E-receptor antibody); (3) that E+ OKM1+ cells mediated both ADCC and NK activity; (4) that the phenotypes of PBMNC forming tumor cell conjugates were (a) OKM1+ (both E-receptor positive and negative) and (b) OKM1- E-receptor positive.  相似文献   

13.
Interactions between antimicrobial agents and phagocytic cells, especially neutrophils, have a potential role in the treatment of infections. The in vitro effects of cefmetazole, a novel beta-lactam antibiotic, at a therapeutic concentration reached in plasma (50 micrograms/ml) on phagocytic and cytotoxic functions of human neutrophils have been studied. In human neutrophils, adherence capacity to nylon fiber and to substrate, chemotaxis, attachment to and ingestion of Candida albicans (with serum, with decomplemented serum and without serum), ingestion of inert particles (latex beads), candidicidal activity and superoxide anion production were all stimulated by cefmetazole. Cefmetazole at this dose was a chemotactic agent for neutrophils. Antibody-dependent cellular cytotoxicity (ADCC) was also increased by this anti-microbial agent.  相似文献   

14.
The target antigen for antibody-dependent-cellular cytotoxicity (ADCC) on Epstein-Barr virus-(EBV) carrying lymphoblastoid cells expressing EBV-specific membrane antigen (MA) were examined with human serum antibody and adult human peripheral lymphocytes as effector cells. These studies confirmed that anti-MA-positive but not MA-negative sera were reactive in the ADCC. The ADCC reaction was positive with cells in which the MA consisted of late (LMA) and early (EMA) components. These included 1) MA-positive cells prepared by EBV antigen-adsorption, 2) cells carrying de novo-synthesized MA without adsorbed MA, and 3) EBV-producer cells expressing MA spontaneously. In all these preparations, the target cells were lysed roughly in parallel with the frequency of MA-positive cells. Inhibition of LMA synthesis in EBV-superinfected cells by phosphonoacetate (PA) reduced ADCC sensitivity significantly and to a far greater extent than MA synthesis as measured by immunofluorescence. This suggests that a target for ADCC is the PA-sensitive LMA. No ADCC reaction occurred with the cell preparation comprised of a high percentage of MA-positive cells induced by 5-iodo-2'-deoxyuridine, which is believed to be EMA only. These results strongly suggest that the target antigen for ADCC in EBV-positive cells is a late MA but not early MA.  相似文献   

15.
16.
Clinical experiments have shown that the Ab-dependent cell-mediated inhibition of Plasmodium falciparum is a major mechanism controlling malaria parasitemia and thereby symptoms. In this study, we demonstrate that a single merozoite per monocyte (MN) is sufficient to trigger optimal antiparasitic activity. Using particulate Ag as pseudomerozoites, we show that only Ags, and no other parasite-derived factor, are required to trigger MN activation and that a single Ag is as potent as the complex combination of Ags constituting the merozoite surface. Moreover, we found that soluble Ags binding at least two Abs are as effective as the parasite at stimulating MN and that nonmalarial Ags are as efficient provided they are targeted by cytophilic Abs. Indeed, only cytophilic IgGs are potent and, in agreement with immunoepidemiological findings, IgG3 is superior to IgG1. Very low Ab concentrations (>700 pM), i.e., in the range of molecules having a hormonal effect, are effective, in contrast to Abs having a direct, neutralizing effect. Finally, Ab-dependent cell-mediated inhibition proved to require the synergistic activation of both FcgammaRIIa and FcgammaRIIIa which both distinguish it from other Ab-dependent cellular cytotoxicity and implies that all MN are not equally effective. These findings have both fundamental and practical implications, particularly for vaccine discovery.  相似文献   

17.
18.
We have previously demonstrated that incubation with IL-2 can induce ADCC activity in murine cells and that this activity was mediated by asialo GM1+, FcR+ cells. In the present study we show that the cytokines IFN-alpha and IFN-gamma, TNF-alpha, and IL-1 alpha are unable to induce antibody-dependent cellular cytotoxicity (ADCC) in murine cells; however, TNF-alpha and IL-1 alpha could substantially augment the ADCC induced by IL-2. IL-1 increased the IL-2-induced ADCC activity in a dose-dependent fashion and in cells isolated from the thymus and spleen. The precursors of the ADCC induced by the combination of IL-1 and IL-2 were asialo GM1+ cells, similar to the precursor cells of IL-2-induced ADCC. The effect of IL-1 and TNF on ADCC was not the result of an increase in the FcR density on the cell surface or the result of an increase in the number of FcR+ cells although IL-1 increased the recovery of viable cells in culture. The main effect of IL-1 and TNF was the enhancement of the lytic ability of the IL-2 cultured cells as indicated by increased intra-cellular benzyloxycarbonyl L-lysine thiobenzylester-esterase activity. These results suggest that lymphokines such as IL-1 and TNF may synergize with IL-2 in the induction of ADCC and could thus potentially be useful for the immunotherapy of established tumors when combined with the administration of specific anti-tumor antibodies.  相似文献   

19.
Prostaglandins can inhibit the generation of lymphokine-activated killer (LAK) cells by interleukin-2 (IL-2) whereas indomethacin augmented the induction of LAK cells by inhibiting prostaglandin synthesis. In the present study we demonstrate that prostaglandin E2 substantially inhibited the generation of both LAK and antibody-dependent cellular cytotoxicity (ADCC) activity by IL-2. In addition, indomethacin enhanced the induction of LAK activity and ADCC in splenocytes exposed to IL-2 in vitro. The effect of indomethacin was dose-dependent, reaching an optimal effect at 1 microM when 100-1000 units/ml IL-2 were employed. The effect of indomethacin on the generation of ADCC was seen in cells taken from both tumor-bearing mice and normal mice. ADCC induced by IL-2 was augmented by culturing cells from the spleen, liver and lungs, in the presence of indomethacin. ADCC induced in the presence of IL-2 and indomethacin was mediated by cells that were mainly plastic non-adherent cells and expressed the asialo-GM1 glycolipid. The potential of indomethacin in combined therapy with cytokines and specific anti-tumor monoclonal antibodies is discussed.  相似文献   

20.
The role of reversing factor (RF) in the regulation of protein synthesis by inhibitory protein kinases that phosphorylate the 38,000-dalton subunit of initiation factor eIF-2 has been examined. Results show that as with the heme-regulated protein kinase (HRI), RF restores protein synthesis in reticulocyte lysates inhibited by translational inhibitors from rat liver, wheat germ, Krebs ascites cell, by oxidized glutathione, the protein kinase activated by double stranded RNA (dRI), and the interferon-induced double stranded RNA activated protein kinase from Ehrlich ascites and Hela cells. These findings suggest that RF plays an important role in eukaryotic protein chain initiation cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号