首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the mechanisms involved in regulation of antibody-dependent cellular cytotoxicity (ADCC) mediated by human monocytes, 51Cr-labeled sheep red blood cells (RBC) were used as target cells in vitro. Monocytes incubated overnight at 37 degrees C before addition of SRBC and antibody exhibited a significant decrease in ADCC activity compared with freshly isolated cells. This pattern was observed with monocytes from all donors tested, regardless of the media used for culture. Supernatants from monocyte cultures did not inhibit the cytotoxic ability of fresh monocytes and cycloheximide, a protein synthesis inhibitor, could not reverse ADCC suppression in cultured monocytes, indicating that the alteration in ADCC is probably not due to inhibitory molecules secreted or synthesized during incubation. A correlation between the decrease in the number of surface FcRI and loss in ADCC ability of cultured monocytes was found. One mechanism for the reduced FcRI expression of 1-day-old monocytes may be rapid internalization that exceeds the rate of reexpression, because cytochalasin-D or monensin, each of which inhibits receptor internalization, maintained FcR expression as well as ADCC ability of cultured monocytes. These data illustrate mechanisms whereby alteration in the number of receptors may underlie loss of receptor-mediated functions, or be involved in augmentation of their biologic activity. The findings that important monocyte functions change under conditions of storage or culture have relevance to in vitro testing of various immune functions of monocytes performed clinically to monitor or guide therapy.  相似文献   

2.
Antibody-depedent cell-mediated cytotoxicity (ADCC) could be initiated without protein synthesis [human peripheral blood lymphocytes as effector cells incubated with 10?3M cycloheximide, (Cy)], although the reaction did not achieve its full lytic ability. This partial inhibition of ADCC was dependent on the dose of Cy. Both ADCC and protein synthesis returned to normal values after removal of the inhibitor. The kinetics of the reaction carried out by Cy-treated effector cells for short periods was similar to that of controls. After this time, the percentage of lysed target cells increased continuously in controls, while the cytotoxiciy of Cy-treated effector cells reached a plateau. When effector cells carried out ADCC in the presence of Cy, their lytic mechanism was “wasted,” and it could be recovered only by removal of the inhibitor. Our results indicate that effector cells have a preformed lytic mechanism operative in ADCC. This lytic mechanism is consumed during the reaction and its recovery requires protein synthesis.  相似文献   

3.
The abilities of unfractionated mononuclear cells (MNC), monocytes (98-99% pure), and lymphocytes (98-99% pure) to carry out the lysis of target cells in the ADCC, NK, NOCC, and MICC assays were compared. Lymphocytes by themselves were able to lyse the CRBC (ADCC), K-562 (NK), and RRBC (MICC) target cells. The monocytes were very effective in the lysis of the CRBC (MICC) target cells. However, the lysis of two other target cells--RRBC (NOCC) and HRBC (ADCC)--required the simultaneous presence of both lymphocytes and monocytes in order to effect optimal lysis. Soluble factor(s) secreted by the cytotoxic cells capable of lysing the target cells were detected only in the NK assay. The activity of the soluble cytotoxic factor (NKCF) was only 25-40% of that exhibited by the cytotoxic NK cells and it was secreted by the cytotoxic cells after 48 hr of culture and not 24 hr of culture which is the usual assay condition. The NKCF was cytotoxic only to the NK target cells and not to the target cells used in the ADCC, NOCC, and MICC cytotoxic assays. Different classes of lymphocytes were cytotoxic in the monocyte-independent assays [ADCC (CRBC), NK (K-562), and MICC (RRBC)]. The null lymphocytes and the T lymphocytes were the primary cytotoxic cells in the ADCC and MICC assays, respectively, whereas the T, B, and null cells were almost equally cytotoxic in the NK assay. With respect to the monocyte-dependent assays [ADCC (HRBC), NOCC (RRBC), and MICC (CRBC)], the cytotoxic activity of any one class of lymphocytes failed to approach that of the unfractionated MNC. The T cells were the most cytotoxic; the B cells exhibited limited cytotoxic activity in only the ADCC assay and the null cells showed no cytotoxic activity. However, the combination of T and non-T cells and, to a lesser extent, T and B cells, exhibited much greater cytotoxic activity than the individual cells and together were as cytotoxic as the unfractionated MNC. It is concluded that, depending upon the selection of the target cells, lysis in the ADCC, NK, NOCC, and MICC assays may be effected by lymphocytes only, by monocytes only, by both monocytes and lymphocytes, or as a result of lymphocyte-monocyte collaboration. In the latter instance more than one class of lymphocytes must be present in order for maximum cytotoxic activity to be expressed.  相似文献   

4.
Stimulation of prostaglandin synthesis in transformed mouse fibroblasts by serum, thrombin, and bradykinin was blocked by actinomycin D and cycloheximide. These RNA and protein synthesis inhibitors did not affect prostaglandin synthetase in vitro or in vivo; nor did they affect the acylation of arachidonic acid into phospholipids. Serum-stimulated release of arachidonic acid and prostaglandins from [3H]arachidonic acid-labeled cells also was inhibited by actinomycin D and cycloheximide. RNA and protein synthesis appear to be required for expression of phospholipase activity; a prerequisite for prostaglandin synthesis by these cells.  相似文献   

5.
Cytotoxic effector cells like cytotoxic T cells, NK cells, monocytes/macrophages, and neutrophils can lyse directly HIV-infected or HIV-coated cells in the absence or presence of anti-HIV antibodies. Therefore, these cytotoxic mechanisms can be invoked either in the control of HIV infection at early stages of the disease or in the generalized immunosuppression observed at later stages of the disease. The relationship between anti-HIV effector mechanisms and disease, however, remains elusive. The present study investigates in HIV+ seropositive asymptomatic patients peripheral blood monocytes (PBM)-mediated antibody dependent cellular cytotoxicity (ADCC) against HIV-coated target cells in the presence of heterologous or autologous anti-HIV serum. To test for specific ADCC against HIV Ag, a T4+ CEM.TR line resistant to TNF and macrophage-mediated cytotoxicity was selected in vitro. ADCC was performed in an 18-h 51Cr-release assay using CEM.TR cells coated with inactivated HIV. Unlike PBM from normal controls, significant ADCC was observed by PBM from HIV+ seropositive patients in the presence of pooled HIV+ antiserum. The ADCC activity was specific for HIV and was dependent on the E:T ratio and the antiserum dilution used. Upon activation of PBM with rIFN-gamma, both normal and HIV+ PBM-mediated ADCC against HIV-coated CEM.TR. Furthermore, ADCC activity by PBM from HIV+ seropositive patients in the presence of their autologous serum was examined. Significant ADCC activity was observed and was dependent on the E:T ratio and serum dilution used. The findings demonstrating anti-HIV ADCC activity by PBM from HIV+ seropositive individuals and their autologous sera support the notion that monocyte-mediated ADCC may be operative in vivo.  相似文献   

6.
Inhibition of translation plays a role in apoptosis induced by a variety of stimuli, but the mechanism by which it promotes apoptosis has not been established. We have investigated the hypothesis that selective degradation of anti-apoptotic regulatory protein(s) is responsible for apoptosis resulting from translation inhibition. Induction of apoptosis by cycloheximide was detected within 2-4 h and blocked by proteasome inhibitors, indicating that degradation of short-lived protein(s) was required. Caspase inhibition and overexpression of Bcl-x(L) blocked cycloheximide-induced apoptosis. In addition, cycloheximide induced rapid activation of Bak and Bax, which required proteasome activity. Mcl-1 was degraded by the proteasome with a half-life of approximately 30 min following inhibition of protein synthesis, preceding Bak/Bax activation and the onset of apoptosis. Overexpression of Mcl-1 blocked apoptosis induced by cycloheximide, whereas RNA interference knockdown of Mcl-1 induced apoptosis. Knockdown of Bim and Bak, downstream targets of Mcl-1, inhibited cycloheximide-induced apoptosis, as did knockdown of Bax. Apoptosis resulting from inhibition of translation thus involves the rapid degradation of Mcl-1, leading to activation of Bim, Bak, and Bax. Because of its rapid turnover, Mcl-1 may serve as a convergence point for signals that affect global translation, coupling translation to cell survival and the apoptotic machinery.  相似文献   

7.
The role of protein synthesis during the activation of macrophages (M phi) by lymphokines (LK) was studied. Peritoneal murine macrophages elicited by proteose-peptone (pM phi) were activated with LK (supernatants from normal mouse spleen cells pulsed with concanavalin A) and tested for cytotoxicity in an 18 hr assay against 111In-labeled L5178Y lymphoma target cells. Reversible (cycloheximide and puromycin) or poorly reversible (emetine and pactamycin) inhibitors of protein synthesis were added during activation, and their effects on pM phi-mediated cytotoxicity and pM phi protein synthesis were measured. Minimal concentrations of inhibitors, reducing the rate of protein synthesis by more than 90% without toxic effects on macrophages, were chosen. Exposure of pM phi to LK for 2 to 18 hr in the presence of reversible inhibitors of protein synthesis did not affect the induction of cytolytic activity, indicating that protein synthesis was not required during the activation period. In contrast, activation of macrophages for 2 hr in the presence of poorly reversible inhibitors of protein synthesis resulted in a considerable reduction of cytolytic activity. The impairment of cytotoxic activity was also evident when pM phi were treated with such drugs during the first 2 hr of an 18 hr exposure to LK or when LK-activated macrophages were treated for 2 hr with the drugs before the addition of the targets. These results demonstrate that active protein synthesis is not required during the exposure of pM phi to LK, but that new proteins have to be synthesized to allow the expression of the cytotoxic activity in LK-activated pM phi.  相似文献   

8.
In vitro culture of either human peripheral blood monocytes or murine peritoneal macrophages for 72 hr in the presence of macrophage colony-stimulating factor (M-CSF) dramatically increased their subsequent ability to mediate antibody-dependent cellular cytotoxicity (ADCC). The M-CSF-treated cells were more effective in ADCC at lower effector to target cell ratios and in the presence of lower concentrations of tumor-specific monoclonal antibody than the untreated control cells. Two other hematopoietic cytokines, granulocyte-macrophage colony-stimulating factor and interleukin-3, reported to enhance other macrophage effector functions were ineffective in promoting the development of ADCC by cultured human monocytes. All three hematopoietic growth factors were capable of enhancing the ability of the cultured monocytes to secrete TNF alpha; however, TNF alpha is unlikely to be an important cytotoxic factor in ADCC because neutralizing antibodies against TNF alpha had no affect on ADCC in vitro. Further, much higher concentrations of M-CSF were required to augment monocyte TNF alpha release (20-100 ng/ml) than ADCC capacity (1-10 ng/ml). These results suggest that M-CSF administration might prove effective in increasing the tumoricidal activities of tumor-specific monoclonal antibodies by enhancing the capacity of monocytes and macrophages to mediate ADCC.  相似文献   

9.
Mononuclear phagocytes participate in host immunological defense against tumors. We have investigated the role of selected recombinant cytokines on human macrophage-mediated tumor cytotoxicity in vitro utilizing a human colon cancer cell line target, SW1116, and murine monoclonal antibody 17-1A. Blood monocytes were kept in continuous culture to allow differentiation into macrophages. Maximum antibody dependent cellular cytotoxicity (ADCC) as measured in a 3H-thymidine release assay occurred after culturing the monocytes for 5-7 days. Human recombinant macrophage colony stimulating factor (CSF) (1,000 U/ml) did not increase ADCC above control levels whereas recombinant human granulocyte-macrophage colony stimulating factor, interleukin 4, and interleukin 3 were all capable of increasing ADCC. Antibodies to the CD11/CD18 integrin receptors did not significantly inhibit ADCC. When the ADCC incubation occurred in the presence of antibodies to the human Fc receptors, ADCC was inhibited significantly only by anti-FcRIII (3G8). A role for tumor necrosis factor alpha or other soluble mediators of cytotoxicity was not demonstrable in this system. These studies suggest avenues for manipulation and augmentation of macrophage-mediated antitumor ADCC.  相似文献   

10.
Lipopolysaccharide (LPS) has been implicated as the bacterial component responsible for much of the endothelial cell injury/dysfunction associated with Gram-negative bacterial infections. Protein synthesis inhibition is required to sensitize the endothelium to lipopolysaccharide-induced apoptosis, suggesting that a constitutive or inducible cytoprotective protein(s) is required for endothelial survival. We have identified two known endothelial anti-apoptotic proteins, c-FLIP and Mcl-1, the expression of which is decreased markedly in the presence of cycloheximide. Decreased expression of both proteins preceded apoptosis evoked by lipopolysaccharide + cycloheximide. Caspase inhibition protected against apoptosis, but not the decreased expression of c-FLIP and Mcl-1, suggesting that they exert protection upstream of caspase activation. Inhibition of the degradation of these two proteins with the proteasome inhibitor, lactacystin, prevented lipopolysaccharide + cycloheximide-induced apoptosis. Similarly, lactacystin protected against endothelial apoptosis induced by either tumor necrosis factor-alpha or interleukin-1beta in the presence of cycloheximide. That apoptosis could be blocked in the absence of new protein synthesis by inhibition of the proteasome degradative pathway implicates the requisite involvement of a constitutively expressed protein(s) in the endothelial cytoprotective pathway. Finally, reduction of FLIP expression with antisense oligonucleotides sensitized endothelial cells to LPS killing, demonstrating a definitive role for FLIP in the protection of endothelial cells from LPS-induced apoptosis.  相似文献   

11.
Abstract Previous reports from our laboratory have demonstrated that peripheral blood monocytes (PBM) from HIV-1 infected individuals are de novo activated and are cytotoxic in vitro. Significant monocyte-antibody-dependent cellular cytotoxicity (ADCC) was obtained against HIV-1 inactivated CD4+ CEM target cells coated with HIV-1 in the presence of autologous seropositive serum. Based on these findings, we hypothesized that in HIV-seropositive individuals the monocytes may play an important role in vivo in the autodestruction of non-infected CD4+ T lymphocytes. The present study was designed to test this hypothesis. Monocytes from normal donors activated with M-CSF lysed CD4+ T cells (CEM) coated with gp120 sensitized by plasma from asymptomatic HIV-1+ individuals in a 8 h 51Cr release assay. ADCC cytotoxic activity varied from one individual to another and was a function of the dilution of the individual seropositive plasma used. We then used circulating CD3+ T lymphocytes as targets for ADCC following treatment with actinomycin D to facilitate the release of radioactive 51Cr. Like CEM, ADCC was obtained with CD3+ T cells coated with gp120 in the presence of HIV seropositive plasma and monocytes. Lysis was specific as T cells that were not coated with gp120 were not destroyed. These findings demonstrate that activated peripheral blood derived monocytes can destroy non-infected gp120-coated circulating T lymphocytes by an ADCC-mediated mechanism. Thus, these findings suggest that ADCC may be one mechanism operating in vivo for the destruction of non-infected CD4+ T lymphocytes.  相似文献   

12.
Human monocytes can be triggered to antibody-dependent cell-mediated cytotoxicity (ADCC) by murine antibodies. In this study, a series of H chain isotype switch variant antibodies against glycophorin A on human RBC was used to study the influence of isotype on the induction of ADCC. Furthermore, it was studied whether the functional heterogeneity in responsiveness to IgG1 and IgG2b anti-CD3 antibodies, as found among different donors in T cell proliferation induction experiments, was reflected in ADCC. Whereas IgG2a induced ADCC to the same extent in monocytes from all donors, IgG1 showed a heterogeneous pattern, which corresponded to the heterogeneity in T cell proliferation studies. IgG1 anti-CD3 nonresponder monocytes could, however, be induced to ADCC by IgG1 antiglycophorin, although they needed a much higher antibody density on the target cell than did responder monocytes. IgG2b antiglycophorin at a high density induced ADCC in monocytes from all donors irrespective of responsiveness to IgG2b anti-CD3, whereas IgE and IgA antiglycophorin were barely effective in monocytes from all donors. By specific blocking with mAb, the FcR that were involved in ADCC directed by the various isotypes were characterized. ADCC by IgG2a was predominantly mediated by FcRI and could be specifically enhanced by culturing the monocytes with rIFN-gamma. ADCC by IgG1 was predominantly mediated through FcRII in both anti-CD3 responder and nonresponder monocytes. FcRII was also involved in ADCC by IgG2b, although other receptors seemed to contribute significantly to ADCC. When FcRII or FcRI were blocked, IgG1 and IgG2a could also functionally interact with FcRI and FcRII, respectively, provided that the target cells were sensitized to a high degree. These findings indicate that FcRI and both forms of FcRII can mediate cytotoxicity and that the specificity of human FcR for murine isotypes is relative.  相似文献   

13.
Human peripheral blood monocytes were found to spontaneously produce prostaglandin of the E series (PGE) in culture medium (0.5 ng to 3.0 ng/7.5 X 10(5) cells), and the addition of K562 tumor cells enhanced the production by five- to 15-fold after 18 hr of incubation. PGE2 (10(-6) M) inhibited the cytolytic activity of freshly isolated peripheral blood monocytes against K562 target cells by 50%. The PGE production was inhibited by inhibitors of cyclo-oxygenase (indomethacin, aspirin, and ETYA) when present during the incubation. However, pretreatment of monocytes with these cyclo-oxygenase inhibitors was ineffective in preventing PGE production. Kinetic experiments showed that appreciable stimulation of PGE production occurred only after 6 hr of co-culture. Other human tumor cell lines (HSB, SB, and CEM) enhanced PGE production upon co-culture with monocytes but to a lesser extent (twofold to threefold). Monocytes treated with 0.4% formaldehyde or heat (56 degrees C) were not capable of producing PGE when cultured alone or with K526 tumor cells. In contrast, formaldehyde-treated, but not heat-treated, K562 tumor cells were able to induce monocytes to produce PGE. By using a single cell conjugation assay, K562 tumor cells were found to bind equally well to treated or untreated monocytes. In contrast, the lytic activity of treated monocytes against K562 target cells was abolished. The presence of protein synthesis inhibitor, cycloheximide, was found to inhibit PGE production by monocytes cultured alone or with K562 tumor cells. Supernatants from K562 tumor cell cultures were also capable of inducing monocytes to produce PGE, and their effect on PGE production from monocytes was suppressed by cycloheximide. In addition, pretreatment of either K562 tumor cells or monocytes with an irreversible protein synthesis inhibitor, emetine, also suppressed the production of PGE upon co-culture with the untreated counterpart. The production of PGE by monocytes in response to exposure to tumor cells may represent a mechanism whereby tumor cells subvert host immune defense against them.  相似文献   

14.
The effect of activating human monocytes in vitro with lipopolysaccharide (LPS) and muramyl dipeptide (MDP) on the production of cytostatic protein factor(s) (CF) has been investigated, and an antiserum against CF has been raised and tested. Upon incubation for 7 hr with LPS, in vitro differentiated human monocytes released CF. During LPS exposure, the presence of the protein synthesis inhibitor cycloheximide, at concentrations which reduced the overall protein synthesis by 60 and 80%, reduced the amount of CF released by only 20 and 40%, respectively. This indicates that the released CF was to a large extent already present in the monocytes before exposure to LPS. Compared to LPS, MDP induced only modest CF release. However, when lymphokine-activated monocytes were exposed to MDP, an increased CF release was observed. By immunizing a rabbit with CF purified by ion-exchange chromatography, chromatofocusing, and gel filtration, an antiserum was raised which neutralized the cytostatic activity released from monocytes exposed to LPS or lymphokines/LPS in sequence on the fourth day of culture. The cytostatic activity obtained by incubating freshly isolated monocytes with LPS was inhibited by the antiserum to a lesser extent, indicating the presence of other cytotoxins or cytotoxic cellular products in addition to CF in supernatants from freshly isolated monocytes. Various CF preparations were tested for IL-1 activity; no correlation between IL-1 activity and cytostatic activity was observed. Moreover, upon gel filtration the CF and IL-1 activities could be separated from each other and are consequently associated with different proteins.  相似文献   

15.
Recent evidence has demonstrated a protein kinase C (PKC)-dependent step in cytotoxic T lymphocyte activation. Here, we examined the influence of PKC in the lytic response of human NK cells to K562, an NK-sensitive tumor target cell. We used the known protein kinase inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7) and HA1004. H-7 caused a dose-related inhibition of NK cell-mediated cytolysis (CMC) when the inhibitor was present throughout the course of the 3-h chromium release assay. The 50% inhibitory concentration for H-7 was 7 microM. In contrast, HA1004, which exerts a greater inhibitory effect on cyclic nucleotide-dependent protein kinases than PKC, had no effect on NK-CMC. The suppression of NK-CMC by H-7 was not due to inhibition of binding of the effector cells to target cells and could be reversed by the addition of PMA. H-7 was most effective in abrogating NK-CMC when added to the assay within the first 30 min and treatment of the effector and target cells with H-7 resulted in no loss of NK-CMC. Because nearly 50% of the normal NK lytic activity had taken place by 30 min, this suggested that H-7 inhibited an early event. H-7 exerted a dose-related suppression of antibody-dependent cell-mediated cytotoxicity (ADCC) suggesting that NK-CMC and ADCC share the utilization of PKC, however, HA1004 did not inhibit ADCC. Treating NK cells with IL-2 or IFN-beta did not overcome the inhibition of NK-CMC by H-7. In this study, we have thus demonstrated the presence of a PKC-dependent step in NK-CMC and ADCC.  相似文献   

16.
Cycloheximide resistance of Physarum polycephalum.   总被引:1,自引:0,他引:1       下载免费PDF全文
In the presence of cycloheximide, wild-type plasmodia of Physarum polycephalum exhibit an immediate decrease in deoxyribonucleic acid synthesis, a reduction in the incorporation of [3H]thymidine into thymidine triphosphate, and an increase in the level of thymidine triphosphate, as well as a decrease in protein synthesis. In this study, we have utilized a cycloheximide-resistant (Cycr) amoebic strain selected from a population of cells mutagenized with nitrosoguanidine. Segregation data indicate that the resistance is due to a single mutation. We have used this Cycr mutant to construct Cycr plasmodial strains. Ribosomes isolated from such Cycr plasmodia showed resistance to cycloheximide in vitro, in contrast to ribosomes isolated from wild-type plasmodia. The Cycr plasmodia showed none of the cycloheximide-induced biochemical effects. Plasmodia heterozygous for the resistance marker were sensitive to cycloheximide with regard to growth but showed an intermediate response in the biochemical parameters. Heterokaryons formed by fusion of various proportions of the sensitive and resistant plasmodia showed a resistance with regard to both growth and biochemical parameters which was directly related to the fraction of Cycr plasmodia present in the heterokaryons. The data are consistent with the hypothesis that the effects of cycloheximide on deoxyribonucleic acid synthesis and nucleoside metabolism are secondary to the effect of the drug on protein synthesis in this organism.  相似文献   

17.
Recently, a novel peptide (Trp-Lys-Tyr-Met-Val-D-Met, WKYMVm) has been shown to induce superoxide generation in human monocytes. The peptide stimulated phospholipase A2 (PLA2) activity in a concentration- and time-dependent manner. Superoxide generation as well as arachidonic acid (AA) release evoked by treatment with WKYMVm could be almost completely blocked by pretreatment of the cells with cytosolic PLA2 (cPLA2)-specific inhibitors. The involvement of cPLA2 in the peptide-induced AA release was further supported by translocation of cPLA2 to the nuclear membrane of monocytes incubated with WKYMVm. WKYMVm-induced phosphatidylbutanol formation was completely abolished by pretreatment with PKC inhibitors. Immunoblot showed that monocytes express phospholipase D1 (PLD1), but not PLD2. GF109203X as well as butan-1-ol inhibited peptide-induced superoxide generation in monocytes. Furthermore, the interrelationship between the two phospholipases, cPLA2 and PLD1, and upstream signaling molecules involved in WKYMVm-dependent activation was investigated. The inhibition of cPLA2 did not blunt peptide-stimulated PLD1 activation or vice versa. Intracellular Ca2+ mobilization was indispensable for the activation of PLD1 as well as cPLA2. The WKYMVm-dependent stimulation of cPLA2 activity was partially dependent on the activation of PKC and mitogen-activated protein kinase, while PKC activation, but not mitogen-activated protein kinase activation, was an essential prerequisite for stimulation of PLD1. Taken together, activation of the two phospholipases, which are absolutely required for superoxide generation, takes place through independent signaling pathways that diverge from a common pathway at a point downstream of Ca2+.  相似文献   

18.
19.
The cytotoxic potential of rabbit peripheral blood monocytes and alveolar macrophages in antibody-dependent cellular cytotoxicity (ADCC) toward both erythrocyte (RBCox) and tumor cell (CEM T-lymphoblast) targets was examined. ADCC was measured in a 4-hr 51Cr-release assay. Alveolar macrophages were more efficient at killing the tumor cell targets (optimally sensitized with rabbit antisera) than monocytes at similar effector cell/target cell (ET) ratios. Tumor cell targets sensitized with seven different antisera (anti-CEM) were lysed by alveolar macrophages but not by the monocytes. In marked contrast, the monocytes were more effective at lysing the sensitized erythrocyte target cells. The degree of cytolysis of RBCox and CEM was dependent on the ET ratio and the degree of sensitization of these target cells. It was demonstrated that the effector cell selectivity in ADCC was directly related to their ability or inability to bind the sensitized target cells as determined by Fc-receptor rosette formation. The transition from monocyte to macrophage may, therefore, have resulted in an alteration in the criteria necessary for Fc-receptor binding to antibody-sensitized target cells and subsequent ADCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号