首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FG human pancreatic carcinoma cells adhere to vitronectin using integrin alpha v beta 5 yet are unable to migrate on this ligand whereas they readily migrate on collagen in an alpha 2 beta 1-dependent manner. We report here that epidermal growth factor receptor (EGFR) activation leads to de novo alpha v beta 5-dependent FG cell migration on vitronectin. The EGFR specific tyrosine kinase inhibitor tyrphostin 25 selectively prevents EGFR autophosphorylation thereby preventing the EGF-induced FG cell migration response on vitronectin without affecting constitutive migration on collagen. Protein kinase C (PKC) activation also leads to alpha v beta 5-directed motility on vitronectin; however, this is not blocked by tyrosine kinase inhibitors. In this case, PKC activation appears to be associated with and downstream of EGFR signaling since calphostin C, an inhibitor of PKC, blocks FG cell migration on vitronectin induced by either PKC or EGF. These findings represent the first report implicating a receptor tyrosine kinase in a specific integrin mediated cell motility event independent of adhesion.  相似文献   

2.
Recent studies indicate that angiogenesis depends, in part, on ligation of integrin alpha(5)beta(1) by fibronectin. Evidence is now provided that integrin alpha(5)beta(1) regulates the function of integrin alpha(v)beta(3) on endothelial cells during their migration in vitro or angiogenesis in vivo. Secretion of fibronectin by endothelial cells leads to the ligation of integrin alpha(5)beta(1), which potentiates alpha(v)beta(3)-mediated migration on vitronectin without influencing alpha(v)beta(3)-mediated cell adhesion. Endothelial cell attachment to vitronectin suppresses protein kinase A (PKA) activity, while addition of soluble anti-alpha(5)beta(1) restores this activity. Moreover, agents that activate intracellular PKA, such as forskolin, dibutyryl cAMP or alpha(5)beta(1) antagonists, suppress endothelial cell migration on vitronectin in vitro or angiogenesis in vivo. In contrast, inhibitors of PKA reverse the anti-migratory or anti-angiogenic effects mediated by alpha(5)beta(1) antagonists. Therefore, alpha(v)beta(3)-mediated endothelial cell migration and angiogenesis can be regulated by PKA activity, which depends on the ligation state of integrin alpha(5)beta(1).  相似文献   

3.
Nischarin, a novel intracellular protein, was originally identified as a binding partner for the alpha5beta1 integrin. Here we show that Nischarin also interacts with members of the PAK family of kinases. The amino terminus of Nischarin preferentially binds to the carboxy-terminal domain of PAK1 when the kinase is in its activated conformation. Nischarin binding to PAK1 is enhanced by active Rac, with the three proteins forming a complex, while expression of the alpha5beta1 integrin also increases the Nischarin/PAK1 association. Interaction with Nischarin strongly inhibits the ability of PAK1 to phosphorylate substrates. This effect on PAK kinase activity closely parallels Nischarin's ability to inhibit cell migration. Conversely, reduction of endogenous levels of Nischarin by RNA interference promotes cell migration. In addition, PAK1 and Nischarin colocalize in membrane ruffles, structures known to be involved in cell motility. Thus, Nischarin may regulate cell migration by forming inhibitory complexes with PAK family kinases.  相似文献   

4.
In cancer and angiogenesis, coagulation-independent roles of tissue factor (TF) in cell migration are incompletely understood. Immobilized anti-TF extracellular domain antibodies induce cell spreading, but this phenomenon is epitope specific and is not induced by anti-TF 5G9. Spreading on anti-TF is beta1 integrin-dependent, indicating functional interactions of the TF extracellular domain 5G9 epitope (a presumed integrin-binding site) and integrins. Recombinant TF extracellular domain supports adhesion of cells expressing alphavbeta3 or certain beta1 integrin heterodimers (alpha3beta1, alpha4beta1, alpha5beta1, alpha6beta1, alpha9beta1) and adhesion is blocked by specific anti-integrin antibodies or mutations in the integrin ligand-binding site. Although several studies have linked TF to cell migration, we here demonstrate that TF specifically regulates alpha3beta1-dependent migration on laminin 5. Expression of TF suppresses alpha3beta1-dependent migration, but only when the TF cytoplasmic domain is not phosphorylated. Suppression of migration can be reversed by 5G9, presumably by disrupting integrin interaction, or by the protease ligand VIIa, known to induce PAR-2-dependent phosphorylation of TF. In both cases, release of alpha3beta1 inhibition is prevented by mutation of critical phosphorylation sites in the TF cytoplasmic domain. Thus, TF influences integrin-mediated migration through cooperative intra- and extracellular interactions and phosphorylation regulates TF's function in cell motility.  相似文献   

5.
Protein kinase B (PKB)/Akt is known to promote cell migration, and this may contribute to the enhanced invasiveness of malignant cells. To elucidate potential mechanisms by which PKB/Akt promotes the migration phenotype, we have investigated its role in the endosomal transport and recycling of integrins. Whereas the internalization of alpha v beta 3 and alpha 5 beta 1 integrins and their transport to the recycling compartment were independent of PKB/Akt, the return of these integrins (but not internalized transferrin) to the plasma membrane was regulated by phosphatidylinositol 3-kinases and PKB/Akt. The blockade of integrin recycling and cell spreading on integrin ligands effected by inhibition of PKB/Akt was reversed by inhibition of glycogen synthase kinase 3 (GSK-3). Moreover, expression of nonphosphorylatable active GSK-3 beta mutant GSK-3 beta-A9 suppressed recycling of alpha 5 beta 1 and alpha v beta 3 and reduced cell spreading on ligands for these integrins, indicating that PKB/Akt promotes integrin recycling by phosphorylating and inactivating GSK-3. We propose that the ability of PKB/Akt to act via GSK-3 to promote the recycling of matrix receptors represents a key mechanism whereby integrin function and cell migration can be regulated by growth factors.  相似文献   

6.
Integrin-associated protein (IAP) is a receptor for the carboxyl- terminal "cell-binding domain" (CBD) of thrombospondin 1 (TS1). IAP associates with alpha v beta 3 integrin and mAbs against IAP inhibit certain integrin functions. Here we examine the effects of the TS1 CBD and 4N1K (KRFYVVMWKK), a cell-binding peptide derived from it, on the adhesion and spreading on vitronectin (VN) of C32 human melanoma cells which express IAP, alpha v beta 3, and alpha v beta 5. Cells adhere to VN at low surface densities via alpha v beta 5 and spread very slowly while adhesion to higher density VN involves both alpha v beta 5 and alpha v beta 3 and results in rapid spreading. Spreading of the cells, but not adhesion, on sparse VN coatings is markedly enhanced by the presence of soluble TS1, the recombinant CBD and 4N1K, but not the "mutant" peptide 4NGG, KRFYGGMWKK, which fails to bind IAP. This enhanced spreading is completely blocked by mAb LM609 against alpha v beta 3 and the anti-IAP mAb B6H12. Correlated with this enhanced spreading is increased tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and a protein of ca. 90 kD. The enhanced spreading induced by TS1 and 4N1K and the constitutive spreading on higher density VN are both blocked by calphostin C (100 nM), wortmannin (10 nM), and tyrosine kinase inhibitors. In contrast, pertussis toxin specifically blocks only the TS1 stimulated spreading on low density VN, indicating that IAP exerts its effects on signal transduction via a heterotrimeric Gi protein acting upstream of a common cell spreading pathway which includes PI-3 kinase, PKC, and tyrosine kinases.  相似文献   

7.
Fibrillins are the major glycoprotein components of microfibrils that form a template for tropoelastin during elastic fibrillogenesis. We have examined cell adhesion to assembled purified microfibrils, and its molecular basis. Human dermal fibroblasts exhibited Arg-Gly-Asp and cation-dependent adhesion to microfibrils and recombinant fibrillin-1 protein fragments. Strong integrin alpha 5 beta 1 interactions with fibrillin ligands were identified, but integrin alpha v beta 3 also contributed to cell adhesion. Fluorescence-activated cell sorting analysis confirmed the presence of abundant alpha 5 beta 1 and some alpha v beta 3 receptors on these cells. Adhesion to microfibrils and to Arg-Gly-Asp containing fibrillin-1 protein fragments induced signaling events that led to cell spreading, altered cytoskeletal organization, and enhanced extracellular fibrillin-1 deposition. Differences in cell shape when plated on fibrillin or fibronectin implied substrate-specific alpha 5 beta 1-mediated cellular responses. An Arg-Gly-Asp-independent cell adhesion sequence was also identified within fibrillin-1. Adhesion and spreading of smooth muscle cells on fibrillin ligands was enhanced by antibody-induced beta1 integrin activation. A375-SM melanoma cells bound Arg-Gly-Asp-containing fibrillin-1 protein fragments mainly through alpha v beta 3, whereas HT1080 cells used mainly alpha 5 beta 1. This study has shown that fibrillin microfibrils mediate cell adhesion, that alpha 5 beta 1 and alpha v beta 3 are both important but cell-specific fibrillin-1 receptors, and that cellular interactions with fibrillin-1 influence cell behavior.  相似文献   

8.
The NC1 domains of human type IV collagen, in particular alpha3NC1, are inhibitors of angiogenesis and tumor growth (Petitclerc, E., Boutaud, A., Prestayko, A., Xu, J., Sado, Y., Ninomiya, Y., Sarras, M. P., Jr., Hudson, B. G., and Brooks, P. C. (2000) J. Biol. Chem. 275, 8051-8061). The recombinant alpha3NC1 domain contained a RGD site as part of a short collagenous sequence at the N terminus, designated herein as RGD-alpha3NC1. Others, using synthetic peptides, have concluded that this RGD site is nonfunctional in cell adhesion, and therefore, the anti-angiogenic activity is attributed exclusively to alpha(v)beta(3) integrin interactions with non-RGD motifs of the RGD-alpha3NC1 domain (Maeshima, Y., Colorado, P. C., and Kalluri, R. (2000) J. Biol. Chem. 275, 23745-23750). This nonfunctionality is surprising given that RGD is a binding site for alpha(v)beta(3) integrin in several proteins. In the present study, we used the alpha3NC1 domain with or without the RGD site, expressed in HEK 293 cells for native conformation, as an alternative approach to synthetic peptides to assess the functionality of the RGD site and non-RGD motifs. Our results demonstrate a predominant role of the RGD site for endothelial adhesion and for binding of alpha(v)beta(3) and alpha(v)beta(5) integrins. Moreover, we demonstrate that the two non-RGD peptides, previously identified as the alpha(v)beta(3) integrin-binding sites of the alpha3NC1 domain, are 10-fold less potent in competing for integrin binding than the native protein, indicating the importance of additional structural and/or conformational features of the alpha3NC1 domain for integrin binding. Therefore, the RGD site, in addition to non-RGD motifs, may contribute to the mechanisms of endothelial cell adhesion in the human vasculature and the anti-angiogenic activity of the RGD-alpha3NC1 domain.  相似文献   

9.
《The Journal of cell biology》1994,127(4):1129-1137
The plasma protein fibronectin is an important opsonin in wound repair and host defense. To better understand the process of fibronectin- mediated phagocytosis, we have transfected K562 cells, which endogenously express alpha 5 beta 1, with alpha v beta 3. In these transfectants, antibodies to alpha v beta 3 block phagocytosis of fibronectin-opsonized beads completely, even though half the ingestion occurs through endogenous alpha 5 beta 1 receptors. alpha 5 beta 1- mediated adhesion to fibronectin-coated surfaces is unaffected by alpha v beta 3 ligation. Neither alpha v beta 5 nor alpha M beta 2 ligation affects alpha 5 beta 1 phagocytic function in transfectants expressing these receptors. Pharmacologic data suggest that alpha v beta 3 ligation suppresses the phagocytic competence of high affinity alpha 5 beta 1 receptors through a signal transduction pathway, perhaps involving protein kinase C. In addition to its significance for phagocytosis, alpha v beta 3 regulation of alpha 5 beta 1 function may be significant for its roles in cell migration, metastasis, and angiogenesis.  相似文献   

10.
Using a K562 cell transfection model, we have previously described a novel relationship between the integrins alpha v beta 3 and alpha 5 beta 1. alpha v beta 3 ligation was able to inhibit alpha 5 beta 1- mediated phagocytosis without effect on alpha 5 beta 1-mediated adhesion. The alpha v beta 3-dependent inhibition apparently required a signal transduction cascade as it was reversed by inhibitors of serine/threonine kinases. Now, we have studied the mechanisms of signal transduction in this system and have found that the beta 3 cytoplasmic tail is both necessary and sufficient for initiation of the signal leading to inhibition of alpha 5 beta 1 phagocytosis. Ligation of integrin-associated protein (IAP), which has been implicated in alpha v beta 3 signal transduction, mimics the effects of alpha v beta 3 ligation only when the beta 3 integrin with an intact cytoplasmic tail is present. Although fibronectin-mediated phagocytosis requires the high affinity conformation of alpha 5 beta 1, ligation of alpha v beta 3/IAP does not prevent acquisition of this high affinity state. We conclude that alpha v beta 3/IAP ligation initates a signal transduction cascade, dependent upon the beta 3 cytoplasmic tail, which inhibits the phagocytic function of alpha 5 beta 1 at a step subsequent to modulation of integrin affinity.  相似文献   

11.
CD98 heavy chain (CD98hc) is expressed highly in developing human placental trophoblast. CD98hc is an amino acid transporter and is thought to function in cell fusion, adhesion, and invasion by interacting with integrins. In invasive extravillous trophoblast, alpha(v)beta(3) integrin is expressed in a temporally and spatially specific manner, which prompted us to investigate the potential role of CD98hc in signal transduction of alpha(v)beta(3) integrin. Immunocytochemistry of extravillous trophoblast derived from human placenta revealed that CD98hc colocalized with alpha(v)beta(3) integrin and with alpha(v)beta(3)-associated cytoplasmic proteins including paxillin, vinculin, and focal adhesion kinase. Coimmunoprecipitation of CD98hc and its mutants revealed that the transmembrane domain of CD98hc is necessary for the association of CD98hc with alpha(v)beta(3) integrin. When CD98hc negative liver cells (FLC4) were stably transfected with CD98hc and the extracellular domain of CD98hc was cross-linked by anti-CD98 antibody, FLC4 cells binding affinity to fibronectin and cell motility increased. The anti-CD98 antibody cross-linking promoted actin stress fiber formation and activation of signal transduction downstream of RhoA GTPase, and elevated the phosphorylation of focal adhesion kinase, paxillin, and protein kinase B. Pretreatment of transfected FLC4 cells with specific inhibitors for alpha(v)beta(3)integrin, phosphatidylinositol 3-kinase, and RhoA diminished these effects caused by anti-CD98 antibody cross-linking. These results suggest that notoriously invasive activity of extravillous trophoblast is mediated by CD98hc, which promotes alpha(v)beta(3) integrin-dependent signals.  相似文献   

12.
Thymidine phosphorylase is an angiogenic factor that is frequently overexpressed in solid tumors, in rheumatoid arthritis, and in response to inflammatory cytokines. Our previous studies showed that cells expressing thymidine phosphorylase stimulated endothelial cell migration in vitro. This was a consequence of the intracellular metabolism of thymidine by thymidine phosphorylase and subsequent extracellular release of 2-deoxyribose. The mechanisms by which 2-deoxyribose might mediate thymidine phosphorylase-induced cell migration in vitro, however, are obscure. Here we show that both thymidine phosphorylase and 2-deoxyribose stimulated the formation of focal adhesions and the tyrosine 397 phosphorylation of focal adhesion kinase in human umbilical vein endothelial cells. Although similar actions occurred upon treatment with the angiogenic factor vascular endothelial growth factor (VEGF), thymidine phosphorylase differed from VEGF in that its effect on endothelial cell migration was blocked by antibodies to either integrin alpha 5 beta 1 or alpha v beta 3, whereas VEGF-induced endothelial cell migration was only blocked by the alpha v beta 3 antibody. Further, thymidine phosphorylase and 2-deoxyribose, but not VEGF, increased the association of both focal adhesion kinase and the focal adhesion-associated protein vinculin with integrin alpha 5 beta 1 and, in intact cells, increased the co-localization of focal adhesion kinase with alpha 5 beta 1. Thymidine phosphorylase and 2-deoxyribose-induced focal adhesion kinase phosphorylation was blocked by the antibodies to alpha 5 beta 1 and alpha v beta 3, directly linking the migration and signaling components of thymidine phosphorylase and 2-deoxyribose action. Cell surface expression of alpha 5 beta 1 was also increased by thymidine phosphorylase and 2-deoxyribose. These experiments are the first to demonstrate a direct effect of thymidine phosphorylase and 2-deoxyribose on signaling pathways associated with endothelial cell migration.  相似文献   

13.
The fibronectin receptor, alpha 5 beta 1, has been shown to be required for fibronectin matrix assembly and plays an important role in cell migration on fibronectin. However, it is not clear whether other fibronectin binding integrins can take the place of alpha 5 beta 1 during matrix assembly and cell migration. To test this, we expressed the human alpha v subunit in the CHO cell line CHO-B2 that lacks the alpha 5 subunit. We found that the human alpha v combined with CHO cell beta 1 to form the integrin alpha v beta 1. Cells that expressed alpha v beta 1 attached to and spread well on fibronectin-coated dishes, but did so less well on vitronectin-coated dishes. This, along with other data, indicated that alpha v beta 1 functions as a fibronectin receptor in CHO-B2 cells. The alpha v beta 1-expressing cells failed to produce a fibronectin matrix or to migrate on fibronectin, although the same cells transfected with alpha 5 do produce a matrix and migrate on fibronectin. The affinity of the alpha v beta 1-expressing cells for fibronectin was fourfold lower than that of the alpha 5 beta 1- expressing cells. In addition, alpha v beta 1 was distributed diffusely throughout the cell surface, whereas alpha 5 beta 1 was localized to focal adhesions when cells were seeded onto fibronectin-coated surfaces. Thus, of the two fibronectin receptors, alpha v beta 1 and alpha 5 beta 1, only alpha 5 beta 1 supports fibronectin matrix assembly and promotes cell migration on fibronectin in the CHO-B2 cells. Possible reasons for this difference in the activities of alpha v beta 1 and alpha 5 beta 1 include the lower affinity of alpha v beta 1 for fibronectin and the failure of this integrin to localize in adhesion plaques on a fibronectin substrate. These results show that two integrins with similar ligand specificities and cell attachment functions may be quite different in their ability to support fibronectin matrix assembly and cell motility on fibronectin.  相似文献   

14.
Many cells express more than one integrin receptor for extracellular matrix, and in vivo these receptors may be simultaneously engaged. Ligation of one integrin may influence the behavior of others on the cell, a phenomenon we have called integrin crosstalk. Ligation of the integrin alphavbeta3 inhibits both phagocytosis and migration mediated by alpha5beta1 on the same cell, and the beta3 cytoplasmic tail is necessary and sufficient for this regulation of alpha5beta1. Ligation of alpha5beta1 activates the calcium- and calmodulin-dependent protein kinase II (CamKII). This activation is required for alpha5beta1-mediated phagocytosis and migration. Simultaneous ligation of alphavbeta3 or expression of a chimeric molecule with a free beta3 cytoplasmic tail prevents alpha5beta1-mediated activation of CamKII. Expression of a constitutively active CamKII restores alpha5beta1 functions blocked by alphavbeta3-initiated integrin crosstalk. Thus, alphavbeta3 inhibition of alpha5beta1 activation of CamKII is required for its role in integrin crosstalk. Structure-function analysis of the beta3 cytoplasmic tail demonstrates a requirement for Ser752 in beta3-mediated suppression of CamKII activation, while crosstalk is independent of Tyr747 and Tyr759, implicating Ser752, but not beta3 tyrosine phosphorylation in initiation of the alphavbeta3 signal for integrin crosstalk.  相似文献   

15.
The fibronectin binding integrins alpha5beta1 and alpha4beta1 generate signals pivotal for cell migration through distinct yet undefined mechanisms. For alpha5beta1, beta1-mediated activation of focal adhesion kinase (FAK) promotes c-Src recruitment to FAK and the formation of a FAK-Src signaling complex. Herein, we show that FAK expression is essential for alpha5beta1-stimulated cell motility and that exogenous expression of human alpha4 in FAK-null fibroblasts forms a functional alpha4beta1 receptor that promotes robust cell motility equal to the alpha5beta1 stimulation of wild-type and FAK-reconstituted fibroblasts. alpha4beta1-stimulated FAK-null cell spreading and motility were dependent on the integrity of the alpha4 cytoplasmic domain, independent of direct paxillin binding to alpha4, and were not affected by PRNK expression, a dominant-negative inhibitor of Pyk2. alpha4 cytoplasmic domain-initiated signaling led to a approximately 4-fold activation of c-Src which did not require paxillin binding to alpha4. Notably, alpha4-stimulated cell motility was inhibited by catalytically inactive receptor protein-tyrosine phosphatase alpha overexpression and blocked by the p50Csk phosphorylation of c-Src at Tyr-529. alpha4beta1-stimulated cell motility of triple-null Src(-/-), c-Yes(-/-), and Fyn(-/-) fibroblasts was dependent on c-Src reexpression that resulted in p130Cas tyrosine phosphorylation and Rac GTPase loading. As p130Cas phosphorylation and Rac activation are common downstream targets for alpha5beta1-stimulated FAK activation, our results support the existence of a novel alpha4 cytoplasmic domain connection leading to c-Src activation which functions as a FAK-independent linkage to a common motility-promoting signaling pathway.  相似文献   

16.
CYR61, an angiogenic factor and a member of the CCN protein family, is an extracellular matrix-associated, heparin-binding protein that mediates cell adhesion, promotes cell migration, and enhances growth factor-stimulated cell proliferation. CYR61 induces angiogenesis and promotes tumor growth in vivo and is expressed in dermal fibroblasts during cutaneous wound healing. It has been demonstrated recently that adhesion of primary skin fibroblasts to CYR61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans, resulting in adhesive signaling and up-regulation of matrix metalloproteinases 1 and 3. CYR61 is composed of four discrete structural domains that bear sequence similarities to the insulin-like growth factor-binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a carboxyl-terminal (CT) domain that resembles cysteine knots found in some growth factors. In this study, we show that a CYR61 mutant (CYR61DeltaCT) that has the CT domain deleted is unable to support adhesion of primary human skin fibroblasts but is still able to stimulate chemotaxis and enhance basic fibroblast growth factor-induced mitogenesis similar to wild type. In addition, fibroblast migration to CYR61 is mediated through integrin alpha(v)beta(5) but not integrins alpha(6)beta(1) or alpha(v)beta(3). Furthermore, we show that CYR61 binds directly to purified integrin alpha(v)beta(5) in vitro. By contrast, CYR61 enhancement of basic fibroblast growth factor-induced DNA synthesis is mediated through integrin alpha(v)beta(3), a known receptor for CYR61 that mediates CYR61-dependent cell adhesion and chemotaxis in vascular endothelial cells. Thus, CYR61 promotes primary human fibroblast adhesion, migration, and mitogenesis through integrins alpha(6)beta(1), alpha(v)beta(5), and alpha(v)beta(3), respectively. Together, these findings establish CYR61 as a novel ligand for integrin alpha(v)beta(5) and show that CYR61 interacts with distinct integrins to mediate disparate activities in a cell type-specific manner.  相似文献   

17.
Integrins are a complex family of divalent cation-dependent cell adhesion receptors composed of one alpha and one beta subunit noncovalently bound to one another. A subset of integrins contains the alpha v subunit in association with one of several beta subunits (e.g. beta 3, beta 5, beta 1). We have recently identified a novel integrin beta subunit, beta 6, that is present in a number of epithelial cell lines. Using a polyclonal antibody raised against the carboxyl-terminal peptide of beta 6, we have now identified the integrin heterodimer, alpha v beta 6, on the surface of two human carcinoma cell lines. Using affinity chromatography of lysates from the pancreatic carcinoma cell line, FG-2, we demonstrate that alpha v beta 6 binds to fibronectin, but not to vitronectin or collagen I. In contrast, the alpha v beta 5 integrin, which is also expressed on FG-2 cells, binds exclusively to vitronectin. Immobilized collagen I does not interact with alpha v integrins, but binds beta 1-containing integrins. Both alpha v beta 6 and alpha v beta 5 are eluted from their respective immobilized ligands by a hexa-peptide containing the sequence Arg-Gly-Asp (RGD). RGD is highly effective in the presence of Ca2+, somewhat less effective in Mg2+, and virtually inactive in Mn2+. These results suggest that alpha v beta 6 functions as an RGD-dependent fibronectin receptor in FG-2 carcinoma cells. In agreement with this notion, cell adhesion assays show that FG-2 cell attachment to fibronectin is only partially inhibited by anti-beta 1 integrin antibodies, implying that other fibronectin receptors may be involved. Taken together with recent reports on the vitronectin receptor function of alpha v beta 5, our results suggest that the previously described carcinoma cell integrin, alpha v beta x (Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989) Cell 57, 59-69), is a mixture of at least two different receptors: alpha v beta 5, mediating adhesion to vitronectin, and alpha v beta 6, mediating adhesion to fibronectin.  相似文献   

18.
MDC-9 is a widely expressed member of the metalloproteinase/disintegrin/cysteine-rich protein family. The disintegrin domain of MDC-9 lacks an RGD motif but has recently been reported to bind the alpha(6)beta(1) integrin; however, it is unclear whether MDC-9 can bind other integrins. In the present study myeloma cells, but not lymphoblastoid cells, were shown to bind to immobilised, recombinantly expressed MDC-9 disintegrin domain (A9dis). Binding was divalent cation-dependent, being supported by Mn(2+) and Ca(2+). Adhesion of myeloma cells to A9dis was completely inhibited by an antibody to the alpha(v)beta(5) integrin but not by antibodies to other subunits. RGD-containing peptides had no effect on binding, suggesting that MDC-9 interacts with alpha(v)beta(5) in an RGD-independent manner. Flow cytometric analyses demonstrated that myeloma cells, but not lymphoblastoid cells, expressed alpha(v)beta(5) on the cell membrane. These data indicated that the disintegrin domain of MDC-9 can function as an adhesion molecule by interacting with an alpha(v)beta(5) integrin.  相似文献   

19.
The basement membrane protein laminin-5 supports tumor cell adhesion and motility and is implicated at multiple steps of the metastatic cascade. Tetraspanin CD151 engages in lateral, cell surface complexes with both of the major laminin-5 receptors, integrins alpha3beta1 and alpha6beta4. To determine the role of CD151 in tumor cell responses to laminin-5, we used retroviral RNA interference to efficiently silence CD151 expression in epidermal carcinoma cells. Near total loss of CD151 had no effect on steady state cell surface expression of alpha3beta1, alpha6beta4, or other integrins with which CD151 associates. However, CD151-silenced carcinoma cells displayed markedly impaired motility on laminin-5, accompanied by unusually persistent lateral and trailing edge adhesive contacts. CD151 silencing disrupted alpha3beta1 integrin association with tetraspanin-enriched microdomains, reduced the bulk detergent extractability of alpha3beta1, and impaired alpha3beta1 internalization in cells migrating on laminin-5. Both alpha3beta1- and alpha6beta4-dependent cell adhesion to laminin-5 were also impaired in CD151-silenced cells. Reexpressing CD151 in CD151-silenced cells reversed the adhesion and motility defects. Finally, loss of CD151 also impaired migration but not adhesion on substrates other than laminin-5. These data show that CD151 plays a critical role in tumor cell responses to laminin-5 and reveal promotion of integrin recycling as a novel potential mechanism whereby CD151 regulates tumor cell migration.  相似文献   

20.
Modulation of integrin αvβ5 regulates vascular permeability, angiogenesis, and tumor dissemination. In addition, we previously found a role for p21-activated kinase 4 (PAK4) in selective regulation of integrin αvβ5-mediated cell motility (Zhang, H., Li, Z., Viklund, E. K., and Strömblad, S. (2002) J. Cell Biol. 158, 1287–1297). This report focuses on the molecular mechanisms of this regulation. We here identified a unique PAK4-binding membrane-proximal integrin β5-SERS-motif involved in controlling cell attachment and migration. We also mapped the integrin β5-binding site within PAK4. We found that PAK4 binding to integrin β5 was not sufficient to promote cell migration, but that PAK4 kinase activity was required for PAK4 promotion of cell motility. Importantly, PAK4 specifically phosphorylated the integrin β5 subunit at Ser-759 and Ser-762 within the β5-SERS-motif. Point mutation of these two serine residues abolished the PAK4-induced cell migration, indicating a functional role for these phosphorylations in migration. Our results may give important leads to the functional regulation of integrin αvβ5, with implications for vascular permeability, angiogenesis, and cancer dissemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号