首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have characterized a histone deacetylase activity associated with yeast nuclei. An unusual feature of the deacetylase is that it is not inhibited by the short-chain fatty acids n-butyrate and propionate. These short-chain fatty acids are typically potent inhibitors of histone deacetylases in eukaryotic systems. The deacetylase(s) were detected by monitoring the levels of acetylation of yeast histones during incubation of isolated yeast nuclei. The activity was optimal at 37 degrees C and at 0.1 M NaCl. The enzyme did not require divalent cations and was inhibited by Zn2+ and Cu2+. A simple activity assay was developed using as substrate, [3H]acetate-labeled histone in chicken erythrocyte nuclei. This assay was used to demonstrate that the deacetylase(s) can be extracted from yeast nuclei with 0.5 M NaCl. A gel electrophoretic analysis of the deacetylated chicken histones verified that the solubilization of incorporated radiolabel was a result of histone deacetylation, not an artifact of histone degradation by yeast proteinases.  相似文献   

4.
5.
6.
Dynamics of histone acetylation in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
Waterborg JH 《Biochemistry》2001,40(8):2599-2605
Rates of turnover for the posttranslational acetylation of core histones were measured in logarithmically growing yeast cells by radioactive acetate labeling to near steady-state conditions. On average, acetylation half-lives were approximately 15 min for histone H4, 10 min for histone H3, 4 min for histone H2B, and 5 min for histone H2A. These rates were much faster than the several hours that have previously been reported for the rate of general histone acetylation and deacetylation in yeast. The current estimates are in line with changes in histone acetylation detected directly at specific chromatin locations and the speed of changes in gene expression that can be observed. These results emphasize that histone acetylation within chromatin is subject to constant flux. Detailed analysis revealed that the turnover rates for acetylation of histone H3 are the same from mono- through penta-acetylated forms. A large fraction of acetylated histone H3, including possibly all tetra- and penta-acetylated forms, appears subject to acetylation turnover. In contrast, the rate of acetylation turnover for mono- and di-acetylated forms of histones H4 and H2B, and the fraction subject to acetylation turnover, was lower than for multi-acetylated forms of these histones. This difference may reflect the difference in location of these histones within the nucleosome, a difference in the spectrum of histone-specific acetylating and deacetylating enzymes, and a difference in the role of acetylation in different histones.  相似文献   

7.
The heptatriacontapeptide [Lys([14C]Ac)12, Lys([3H]Ac)16]histone H4-(1–37) was synthesized by the automated solid phase method. This dual-labeled peptide was designed for studies on the mechanism of histone deacetylation. The synthesis was monitored by an automated picrate method; and the product, purified by affinity chromatography and ion exchange chromatography, was homogeneous by polyacrylamide gel electrophoresis and gave excellent amino acid and radiolabel ratios. A purified calf thymus histone deacetylase released acetyl groups from this synthetic peptide at essentially the same rate as from a diacetylated 1–37 peptide derived from native calf thymus histone H4. The relative rate of release of [14C]acetyl from Lys12 and of [3H]acetyl from Lys16 was 1.03 ± 0.03 throughout the time course of the enzymatic assay. Based on these results, possible mechanisms of histone deacetylation are proposed.  相似文献   

8.
Post-translational modifications of core histone proteins play a key role in chromatin structure and function. Here, we study histone post-translational modifications during reentry of protoplasts derived from tobacco mesophyll cells into the cell cycle and evaluate their significance for progression through mitosis. Methylation of histone H3 at lysine residues 4 and 9 persisted in chromosomes during all phases of the cell cycle. However, acetylation of H4 and H3 was dramatically reduced during mitosis in a stage-specific manner; while deacetylation of histone H4 commenced at prophase and persisted up to telophase, histone H3 remained acetylated up to metaphase but was deacetylated at anaphase and telophase. Phosphorylation of histone H3 at serine 10 was initiated at prophase, concomitantly with deacetylation of histone H4, and persisted up to telophase. Preventing histone deacetylation by the histone deacetylase inhibitor trichostatin A (TSA) led to accumulation of protoplasts at metaphase-anaphase, and reduced S10 phosphorylation during anaphase and telophase; in cultured tobacco cells, TSA significantly reduced the frequency of mitotic figures. Our results indicate that deacetylation of histone H4 and H3 in tobacco protoplasts occurs during mitosis in a phase-specific manner, and is important for progression through mitosis.  相似文献   

9.
Chicken immature red blood cells were incubated for 1 hour in Swim's medium containing 3H-acetate and 10 mM n-butyrate. During the incubation period, the small percentage of dynamically acetylated and deacetylated histone is radiolabeled and hyperacetylated. A second effect of the n-butyrate incubation is to shift a small subset of nucleohistone into a soluble form. This chromatin is predominantly polynucleosome size (approximately dimer to pentamer) and can be separated from soluble mononucleosomes by 5-30% sucrose gradient centrifugation. The soluble polynucleosomes are 25-30 fold enriched for adult beta-globin (beta A) DNA and contain the hyperacetylated histones. We have tested whether histone hyperacetylation is responsible for the enhanced beta-globin chromatin solubility by in vitro deacetylation of the soluble chromatin histones. This procedure converts the beta-globin polynucleosomes to an insoluble form, demonstrating that histone hyperacetylation is in fact directly responsible for the increased solubility of the beta A chromatin.  相似文献   

10.
Incorporation of sodium [3H]acetate into histones of rats was examined as a function of age. Incorporation was observed to decline with age up to 24 months, at which time a levelling occurred. Controls indicated that this decrease in histone acetylation could not be attributed to variability in isotope delivery to the liver or to alterations in intracellular 'pools' available for acetylation. Polyacrylamide gel electrophoresis established that, in all cases, acetate was incorporated primarily into histone fractions H3 and H4 and the pattern of incorporation exhibited age-dependent phenomena. H4 was predominantly labelled in 2 months animals, while in 12, 16, and 24 months animals H3 was more highly labelled; at 27 months the two fractions were labelled equally. Assessment of histone acetylase and deacetylase activities indicates that deacetylase activity increased with age.  相似文献   

11.
Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4‐mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4‐mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi‐deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly.  相似文献   

12.
Antibodies specific for acetylated isoforms of histone H4 have been used to compare acetylation of this histone in interphase and metaphase cells. Two rabbit antisera (R5 and R6) were used, each specific for H4 molecules acetylated at one of the four possible acetylation sites, namely Lys-5 (R6) and Lys-12 (R5). Both antisera bound preferentially to the more-acetylated H4 isoforms (H4Ac2-4). To test for continued H4 acetylation in metaphase chromosomes. Chinese hamster ovary cells were blocked in metaphase and treated for one hour with the deacetylase inhibitor sodium butyrate. Isolated chromosomes were assayed for H4 acetylation by antibody labeling and flow cytometry. H4 acetylation was increased several fold by this brief butyrate treatment. The increase was in direct proportion to DNA content, with no evidence for exceptionally high- or low-labeling chromosomes. The results demonstrate that a cycle of H4 acetylation and deacetylation continues within metaphase chromosomes. Immunofluorescence microscopy showed labeling to be distributed throughout the chromosome, but with variable intensity. Western blotting and immunostaining with R5 and R6 showed a net reduction in labeling of H4 from metaphase cells, with major reductions in the more-acetylated isoforms H4Ac3-4. In contrast, labeling of H4Ac1 was reduced to a lesser extent (R6) or increased (R5). This increase indicates more frequent use of the acetylation site at lysine 12 in H4Ac1 from metaphase cells.  相似文献   

13.
Histone acetylation plays an important role in the regulation of chromatin structure and gene function. In mammalian oocytes, histones H3 and H4 are highly acetylated during the germinal vesicle (GV) stage, and global histone deacetylation takes place via a histone deacetylase (HDAC)-dependent mechanism after GV breakdown (GVBD). The presence of HDACs in the GVs of mammalian oocytes in spite of the high acetylation states of nuclear histones indicates that the HDACs in the nucleus are inactive but become activated after GVBD. However, the fluctuation pattern, the localization of HDAC activity during meiotic maturation and, moreover, the responsibility of nuclear HDACs for global histone deacetylation are still unknown. Here, we demonstrated using porcine oocytes that total HDAC activity was maintained throughout meiotic maturation, and high HDAC activity was observed in both the nucleus and the cytoplasm at the GV stage. The experiments with valproic acid (VPA), a specific class I HDAC inhibitor, revealed that the HDACs in GVs were class I, and those in the cytoplasm were other than class I. Interestingly, VPA had no effect on global histone deacetylation after GVBD, indicating that nuclear HDACs were not required for global histone deacetylation. To confirm this possibility, we removed the nuclei from immature oocytes, injected somatic cell nuclei into the enucleated oocytes, and showed that injected somatic cell nuclei were dramatically deacetylated after nuclear envelope breakdown. These results revealed that nuclear contents, including class I HDACs, are not required for the global histone deacetylation during meiosis, and that cytoplasmic HDACs other than class I are responsible for this process.  相似文献   

14.
Incorporation of sodium [3H]acetate into histones of rats was examined as a function of age. Incorporation was observed to decline with age up to 24 months, at which time a levelling occurred. Controls indicated that this decrease in histone acetylation could not be attributed to variability in isotope delivery to the liver or to alterations in intracellular ‘pools’ available for acetylation. Polyacrylamide gel electrophoresis established that, in all cases, acetate was incorporated primarily into histone fractions H3 and H4 and the pattern of incorporation exhibited age-dependent phenomena. H4 was predominantly labelled in 2 month animals, while in 12, 16 and 24 month animals H3 was more highly labelled; at 27 months the two fractions were labelled equally.Assessment of histone acetylase and deacetylase activities indicates that deacetylase activity increased with age.  相似文献   

15.
Here we report a detailed analysis of waves of histone acetylation that occurs throughout spermatogenesis in mouse. Our data showed that spermatogonia and preleptotene spermatocytes contained acetylated core histones H2A, H2B and H4, whereas no acetylated histones were observed throughout meiosis in leptotene or pachytene spermatocytes. Histones remained unacetylated in most round spermatids. Acetylated forms of H2A and H2B, H3 and H4 reappeared in step 9 to 11 elongating spermatids, and disappeared later in condensing spermatids. The spatial distribution pattern of acetylated H4 within the spermatids nuclei, analyzed in 3D by immunofluorescence combined with confocal microscopy, showed a spatial sequence of events tightly associated with chromatin condensation. In order to gain an insight into mechanisms controlling histone hyperacetylation during spermiogenesis, we treated spermatogenic cells with a histone deacetylase inhibitor, trichostatin A (TSA), which showed a spectacular increase of histone acetylation in round spermatids. This observation suggests that deacetylases are responsible for maintaining a deacetylated state of histones in these cells. TSA treatment could not induce histone acetylation in condensing spermatids, suggesting that acetylated core histones are replaced by transition proteins without being previously deacetylated. Moreover, our data showed a dramatic decrease in histone deacetylases in condensing spermatids. Therefore, the regulation of histone deacetylase activity/concentration appears to play a major role in controling histone hyperacetylation and probably histone replacement during spermiogenesis.  相似文献   

16.
17.
We have obtained a number of variant HTC cells which are capable of vigorous replication in the presence of 6 mM sodium butyrate. These cells show characteristic changes in histone acetylation. H2A/H2B are no longer modified and the turnover of histones H3/H4 acetate is about 4-fold greater than in control HTC cells at the same butyrate concentration. Histone deposition continues successfully even though histones H3/H4 become hyperacetylated upon association with the chromatin. Prompt deacetylation of new histones does not appear to be a prerequisite for successful deposition processes. Initial enzymatic studies indicate that not only do the butyrate-resistant cells show an increased deacetylase activity (on a per cell basis), but also the enzyme is less sensitive to sodium butyrate under in vitro assay conditions. In contrast to control HTC cells in 6 mM butyrate in which dexamethasone induction of tyrosine aminotransferase is inhibited, the butyrate-resistant variant cells are capable of tyrosine aminotransferase induction even in the presence of butyrate. The implications of these observations are discussed.  相似文献   

18.
19.
Choy JS  Acuña R  Au WC  Basrai MA 《Genetics》2011,189(1):11-21
Hypoacetylated H4 is present at regional centromeres; however, its role in kinetochore function is poorly understood. We characterized H4 acetylation at point centromeres in Saccharomyces cerevisiae and determined the consequences of altered H4 acetylation on chromosome segregation. We observed low levels of tetra-acetylated and K16 acetylated histone H4 (H4K16Ac) at centromeres. Low levels of H4K16Ac were also observed at noncentromeric regions associated with Cse4p. Inhibition of histone deacetylases (HDAC) using nicotinamide (NAM) caused lethality in cse4 and hhf1-20 kinetochore mutants and increased centromeric H4K16Ac. Overexpression of Sas2-mediated H4K16 acetylation activity in wild-type cells led to increased rates of chromosome loss and synthetic dosage lethality in kinetochore mutants. Consistent with increased H4K16 acetylation as a cause of the phenotypes, deletion of the H4K16 deacetylase SIR2 or a sir2-H364Y catalytic mutant resulted in higher rates of chromosome loss compared to wild-type cells. Moreover, H4K16Q acetylmimic mutants displayed increased rates of chromosome loss compared to H4K16R nonacetylatable mutants and wild-type cells. Our work shows that hypoacetylated centromeric H4 is conserved across eukaryotic centromeres and hypoacetylation of H4K16 at centromeres plays an important role in accurate chromosome segregation.  相似文献   

20.
A 60 minute exposure of chicken immature erythrocytes to n-butyrate shifts actively acetylated and deacetylated histones to hypermodified forms. Micrococcal nuclease digestion of nuclei from n-butyrate treated cells and subsequent fractionation of the chromatin releases 40-45% of the adult beta-globin (beta A) nucleohistone into a soluble fraction. This is an eleven fold enrichment over the soluble chromatin from untreated cells (Ferenz and Nelson (1985) Nucleic Acids Res. 13, 1977-1995). The enhanced beta A chromatin solubility and induced histone hyperacetylation are coincident. Removal of n-butyrate from the cell incubation medium allows rapid histone deacetylation and a striking reduction in beta A chromatin solubility. Chromatin from cells incubated in the absence of n-butyrate, or in medium containing 10 mM NaCl or 2% dimethylsulfoxide, does not exhibit histone hyperacetylation, or the acquired solubility of beta A chromatin. We show that the H4 histone co-isolated with the beta A DNA is in a hyperacetylated state and present evidence that the n-butyrate incubation increases the solubility of both coding and noncoding chromatin regions in the beta-globin domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号