首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary The phenomenon of dosage compensation in Drosophila melanogaster which consists in doubling of the activity of the X-chromosome genes in males as compared to those in females was studied.The specific activities of 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD) determined by the sex-linked structural genes Pgd and Zw respectively were studied in flies carrying duplications for different regions of the X-chromosome. The increase in dose of Pgd and Zw in females resulting from the addition of an extra X-chromosome or X-fragments leads to a proportional rise in the specific activities of 6PGD and G6PD. On the other had the addition to females of the X-chromosome carrying no Pgd gene or X-fragments lacking Pgd and Zw has no effect on the enzyme activities. Thus we failed to reveal in the X-chromosome any compensatory genes envisaged by Muller, which would repress sex-linked structural genes proportional to their dose.The 6PGD and G6PD levels in phenotypically male-like intersexes carrying two X-chromosomes and three autosome sets (2X3A) is 30% higher than in diploid (2X2A) or triploid (3X3A) females. However the specific activities of the enzymes in female-like intersexes are the same as in regular females. The levels of 6PGD and G6PD per one X-chromosome are 1.5–2.0 times higher in the intersexes than in the normal females and metafemales (3X2A). The results indicate that the level of expression of the X-chromosome is determined by the X:A ratio. It is suggested that the decreased X:A ratio in males is responsible for the hyperactivation of their X-chromosomes.  相似文献   

3.
4.
Thymidine-3H labeling patterns on the X (section 1 A to 12 E of Bridges' map) and 2 R (section 56 F to 60 F of Bridges' map) segments in the salivary gland chromosomes of Drosophila melanogaster have been analyzed in male and female separately. The observed patterns fit, with a few exceptions, in a continuous to discontinuous labeling sequence. In nuclei with similar labeling patterns on the 2R segment in both sexes, the number of labeled sites on the X in male is always less than in female X's. The labeling frequency of the different sites on the male X is considerably lower than those on the female X's, while the sites on the 2R segment have very similar frequency in the two sexes. The rate of thymidine-3H incorporation (as judged by visual grain counting) is relatively higher in male X than in female X's. It is concluded that the model sequence of replication in polytene chromosomes follows a continuous to discontinuous labeling sequence, and that the single X in male completes its replication earlier than either the autosomes in male or the X's in female. This asynchronous and faster rate of replication by the polytene X-chromosome in male substantiates the hypothesis of hyperactivity of the single X in male as the chromosomal basis of dosage compensation in Drosophila.  相似文献   

5.
Dosage compensation in Drosophila melanogaster triploids   总被引:1,自引:1,他引:0  
  相似文献   

6.
7.
The incorporation of 3H-uridine in different regions of polytene chromosomes in live cells of the Drosophila melanogaster salivary glands was compared with the incorporation of 3H-UTP in the same regions under the incubation of cytological preparations of these chromosomes with the E. coli RNA polymerase. The label distribution by regions was compared with the DNA content in them. Individual regions of chromosomes differ by 3H-uridine incorporation in live cells to a much greater extent than by 3H-UTP incorporation in vitro under the incubation with a non-homologous enzyme. RNA synthesis in an exogenous enzyme depends on the DNA content in different chromosome regions to a much greater extent than RNA synthesis in vivo. The correlation of label distribution after 3H-uridine incorporation in live cells and after RNA synthesis in vitro on the preparations by the bacterial RNA polymerase is, correspondingly, very low. This enzyme forms, however, RNA's on puffs 2-3 times more actively than on the same regions in non-puffing state but this difference is dozens of times greater in live cells. RNA synthesis in vitro is, thus, non-specific and does not correspond practically to the intensity of RNA synthesis on the same chromosome regions in live cells. At the same time, as in live cells, the E. coli enzyme synthesizes twice more RNA on the single X-chromosome of males (1X2A) than on each of X-chromosomes of diploid (2X2A) and triploid (3X3A) females or superfemales (3X2A), whereas in intersexes (2X3A) X-chromosomes display intermediate template activity. Thus, RNA synthesis by a heterologous enzyme in vitro does not differ by this index from the synthesis in live cells. It is suggested that differences in the template activity of X-chromosomes in vitro depending on the sex index (X : A) are due to different degree of DNP condensation in these chromosomes. In spite of differences in the degree of condensation, the male X-chromosome binds on the fixed preparation approximately the same amount of thymus histone F1 carrying fluorochrome as each of two female X-chromosomes. Hence, there is no sharp difference between the male and female X-chromosomes by the number and length of DNA regions accessible for interaction with exogenous proteins. On the basis of the data obtained, a hypothesis about two levels and, respectively, two mechanisms of control gene activity in animal chromosomes is considered. The first mechanism is, supposedly, based on decondensation of DNP appears to result in that the same proteins-regulators in the same amount activate corresponding genes in X-chromosome in males twice more strongly than in females.  相似文献   

8.
Mating between a diploid male and a diploid female ofBombus atratus produced fertile triploid F1 females. The F2 descendents of these virgin females were composed of haploid males (10), diploid males (4), aneuploid males (3) and intersexes (2). These data indicate that sex is produced by a balance between male determining and female determining genes: they, also, suggest that the number of sex genes are not large.  相似文献   

9.
Summary The deficiency of the 38B-40 region containing histone genes in one of the 2nd chromosomes of D. melanogaster triploid intersexes increases the template activity of X-chromosomes both in vivo and in vitro without noticeably affecting autosome activity. This deficiency in the heterozygous state inhibits the variegated position effect of the white gene in the T(1;3)w vcotranslocation in diploid females and males, but not affect their rate of development. The variegation suppressor Su(var)hg-1 not only suppress the gene position effect in diploid flies, but also increases the template activity of X-chromosomes in triploid intersexes.The results are discussed with respect to the dependence of gene activity on the structure of chromosomes (density of DNP packing).  相似文献   

10.
Triploid intersexes homozygous for a mutant (msl-2) known to impede the hyperactivation of the X chromosome in diploid males differentiate into adults, sexually indistinguishable from their heterozygous sibs. A shift toward female sexual differentiation mediated by manipulating the rearing temperature is accompanied by an apparent increase in the level of an X-linked gene product. This unexpected result is rationalized in terms of differential lethality of individuals at the two extremities of the distribution of X-activity levels in intersexes raised at a particular temperature. No evidence of a mosaicism comparable to the sexual mosaicism exhibited could be found with respect to an X-linked gene product in triploid intersexes.  相似文献   

11.
The classical balance concept of sex determination in Drosophila states that the X-chromosome carries dispersed female-determining factors. Besides, a number of autosomal genes are known that, when mutant, transform chromosomal females (XX) into pseudomales (tra), or intersexes (ix, dsx, dsx). To test whether large duplications of the X-chromosome have a feminizing effect on the sexual phenotype of these mutants, we constructed flies that were mutant for ix, dsx, dsx or tra and had two X-chromosomes plus either a distal or a proximal half of an X-chromosome. These or even smaller X-chromosomal fragments had a strong feminizing effect when added to triploid intersexes (XX; AAA). In the mutants, however, no shift towards femaleness was apparent. We conclude that enhancing the female determining signal is ineffective in flies that are mutant for an autosomal sex determining gene, and therefore, that these genes are under hierarchical control of the signal given by the X:A ratio. Parallels between sex-determining and homeotic genes are drawn.  相似文献   

12.
Barbara Meer 《Chromosoma》1976,57(3):235-260
Male hybrids of the cross D. azteca x D. athabasca are larger (hybrid giant males) than their parents, whereas hybrid females are of the same size as the parental species. Microspectrophotometric measurements have shown that the larval polytene salivary gland chromosomes of hybrid giant males undergo one more endoreplication than those of their sisters or parents. Replication patterns of the larval salivary gland chromosomes were compared after pulse labeling with 3H-thymidine and autoradiography. In females of either species as well as of hybrids X-chromosomes and autosomes are equally labeled, i.e. all chromosome arms replicate synchronously. In males, however, often fewer sites are labeled on the X-chromosome than on the autosomes. In addition, in a significant number of nuclei from D. athabasca males and also from hybrid giant males the converse can also be observed: i.e. more sites are labeled on the X-chromosome than on the autosomes. The modified labeling patterns are interpreted as an indication of a time-shift in the replication of hemizygous X-chromosomes in males, in relation to the autosomes.  相似文献   

13.
The signal for sex determination in the nematode Caenorhabditis elegans is the ratio between the number of X chromosomes and the number of sets of autosomes (the X/A ratio). Animals with an X/A ratio of 0.67 (a triploid with two X chromosomes) or less are males. Animals with an X/A ratio of 0.75 or more are hermaphrodites. Thus, diploid males have one X chromosome and diploid hermaphrodites have two X chromosomes. However, the difference in X-chromosome number between the sexes is not reflected in general levels of X-linked gene expression because of the phenomenon of dosage compensation. In dosage compensation, X-linked gene expression appears to be 'turned down' in 2X animals to the 1X level of expression. An intriguing and unexplained finding is that mutations and X-chromosome duplications that elevate X-linked gene expression also feminize triploid males. One way that this relationship between sex determination and X-linked gene expression may be operating is discussed.  相似文献   

14.
15.
Triploid intersexes homozygous for a mutant (msl-2) known to impede the hyperactivation of the X chromosome in diploid males differentiate into adults, sexually indistinguishable from their heterozygous sibs. A shift toward female sexual differentiation mediated by manipulating the rearing temperature is accompanied by an apparent increase in the level of an X-linked gene product. This unexpected result is rationalized in terms of differential lethality of individuals at the two extremities of the distribution of X-activity levels in intersexes raised at a particular temperature. No evidence of a mosaicism comparable to the sexual mosaicism exhibited could be found with respect to an X-linked gene product in triploid intersexes.  相似文献   

16.
17.
Spontaneously cycling LT/Sv strain female mice were mated to hemizygous Rb(X.2)2Ad males in order to facilitate the distinction of the paternal X chromosome, and the pregnant females were autopsied at about midday on the tenth day of gestation. Out of a total of 222 analysable embryos recovered, 165 (74.3%) were diploid and 57 (25.7%) were triploid. Of the triploids, 26 had an XXY and 31 an XXX sex chromosome constitution. Both embryonic and extra-embryonic tissue samples from the triploids were analysed cytogenetically by G-banding and by the Kanda technique to investigate their X-inactivation pattern. The yolk sac samples were separated enzymatically into their endodermally-derived and mesodermally-derived components, and these were similarly analysed, as were similar samples from a selection of control XmXp diploid embryos. In the case of the XmXmY digynic triploid embryos, a single darkly-staining Xm chromosome was observed in 485 (82.9%) out of 585, 304 (73.3%) out of 415, and 165 (44.7%) out of 369 metaphases from the embryonic, yolk sac mesodermally-derived and yolk sac endodermally-derived tissues, respectively. The absence of a darkly staining X-chromosome in the other metaphase spreads could either indicate that both X-chromosomes present were active, or that the Kanda technique had failed to differentially stain the inactive X-chromosome(s) present. In the case of the XmXmXp digynic triploid embryos, virtually all of the tissues analysed comprised two distinct cell lineages, namely those with two darkly-staining X-chromosomes, and those with a single darkly staining X-chromosome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Regulation of Drosophila sex determination and X-chromosome dosage compensation in response to the X-chromosome/autosome (X/A) balance of the zygote is shown to require proper functioning of both the da+ gene in the mother and the Sxl+ gene in the zygote. Previous studies led to the hypothesis that zygotic Sxl+ alleles are differentially active in females (XXAA) vs males (XYAA) in response to the X/A balance, and that maternal da+ gene product acts as a positive regulator in this connection. Sxl+ activity was proposed to impose the female developmental sequence on cells which would follow the male sequence in its absence. Important predictions of this proposal are verified. This study focuses primarily on the phenotype of triploid intersexes (XXAAA, X/A = 0.67). They are shown here to survive effects of da and Sxl mutations that would be lethal to diploids. The ambiguous X/A signal of intersexes normally causes them to develop as phenotypic mosaics of male and female tissue. Loss of maternal da+ or zygotic Sxl+ gene function shifts their somatic sexual phenotype to the male alternative. A gain-of-function mutation at Sxl has the opposite effect, imposing female development regardless of the maternal genotype with respect to da. It also reduces their rate of X-linked gene expression. The effects of a duplication of Sxl+ resemble those of the constitutive Sxl allele, but are less extreme. The role of these genes in the process of X-chromosome dosage compensation is inferred indirectly from the strict dependence of the mutations' lethal effects on the X/A balance in haploids, diploids, and triploids, and more directly from the effects of the mutations on the phenotypes of the X-linked neomorphic mutations, Bar and Hairy-wing. The relationship of da+ and Sxl+ gene functions to those of other sex-specific lethal loci in D. melanogaster, and to sex determination mechanisms in other species, is discussed.  相似文献   

19.
Summary The X-chromosome of Microtus agrestis (2 n=50), comprising about 20 per cent of the homogametic haploid (AX) set, is the largest X-chromosome reported so far in placental mammals. It is four times the size of the X possessed by a great majority of mammals, including the human and the mouse. The Y-chromosome is also enormous, almost three-fifths the size of the X.The present cytological study concerned somatic interphase and prophase nuclei as well as the DNA replication pattern revealed by labeling cultured bone marrow cells with tritiated thymidine.In the male nuclus, the entire Y as well as the long arm and proximal part of the short arm of the X are late labeling and positively heteropycnotic. In the female, one entire X is late labeling and condensed, while the other X shows the same labeling pattern as the male X. Thus the pattern of inactivation of this huge X is such that in each diploid nucleus of both sexes, the amount of euchromatic X-chromosome material is the same as it is in the majority of placental mammals in which the X comprises about five per cent of the haploid set.

Wesentliche Teile der vorliegenden Arbeit werden von Gertraud Flinspach als Dissertation der Medizinischen Fakultät der Universität Freiburg i.Br. vorgelegt.  相似文献   

20.
In the textbook view, the ratio of X chromosomes to autosome sets, X:A, is the primary signal specifying sexual fate in Drosophila. An alternative idea is that X chromosome number signals sex through the direct actions of several X-encoded signal element (XSE) proteins. In this alternative, the influence of autosome dose on X chromosome counting is largely indirect. Haploids (1X;1A), which possess the male number of X chromosomes but the female X:A of 1.0, and triploid intersexes (XX;AAA), which possess a female dose of two X chromosomes and the ambiguous X:A ratio of 0.67, represent critical tests of these hypotheses. To directly address the effects of ploidy in primary sex determination, we compared the responses of the signal target, the female-specific SxlPe promoter of the switch gene Sex-lethal, in haploid, diploid, and triploid embryos. We found that haploids activate SxlPe because an extra precellular nuclear division elevates total X chromosome numbers and XSE levels beyond those in diploid males. Conversely, triploid embryos cellularize one cycle earlier than diploids, causing premature cessation of SxlPe expression. This prevents XX;AAA embryos from fully engaging the autoregulatory mechanism that maintains subsequent Sxl expression, causing them to develop as sexual mosaics. We conclude that the X:A ratio predicts sexual fate, but does not actively specify it. Instead, the instructive X chromosome signal is more appropriately seen as collective XSE dose in the early embryo. Our findings reiterate that correlations between X:A ratios and cell fates in other organisms need not implicate the value of the ratio as an active signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号