首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine whether an apolipoprotein-free artificial triacylglycerol emulsion can substitute for VLDL in studying cholesterol ester-triacylglycerol exchange processes between triacylglycerol-rich lipoproteins and cholesterol ester-rich lipoproteins, we used Intralipid to modify human plasma LDL. Intralipid was incubated with LDL in the presence of lipoprotein-poor plasma (d greater than 1.21 g/ml) at 37 degrees C. Intralipid served as an acceptor for cholesterol ester and as a donor of triacylglycerol, modifying the low-density lipoproteins so that triacylglycerol became the major core lipid in the particle - the contribution of cholesterol ester to LDL mass decreased from 38% to 18%, while that of triacylglycerol increased from 4.9% to 26%. On lipolysis most added LDL triacylglycerol (59-72%) was hydrolyzed, resulting in a smaller particle than the "native' LDL particle with net loss of cholesterol ester. Incubation of LDL with the original Intralipid emulsion resulted in modified LDL with a high relative weight of phospholipid (27.7%). On removal of excess phospholipid from Intralipid and incubation of the resultant "washed' Intralipid with LDL, the relative weight of phospholipid in modified LDL decreased to 20%, which was similar to that observed after incubation of LDL with VLDL. We demonstrate that artificial triacylglycerol emulsion can indeed substitute for VLDL in neutral lipid exchange processes, and further confirm that transfer of core cholesterol ester and triacylglycerol occurs independently of the apolipoproteins present in triacylglycerol-rich lipoproteins and LDL.  相似文献   

2.
Transfer of cholesteryl ester between triacylglycerol/phospholipid microemulsions catalyzed by human plasma lipid transfer protein was investigated with a pyrene-containing analogue of which fluorescent properties depend on its concentration in the core of the microemulsions. The transfer of pyrene-cholesteryl ester between the emulsions was increased by the transfer protein linearly with its concentration, but maximally only to the extent of twice as much as spontaneous transfer in the given experimental conditions. When human apolipoproteins A-I or A-II are present in the reaction mixture enough to saturate the surface of the emulsion, the enhancement of the pyrene-cholesteryl ester transfer reaction by the transfer protein was 7.5-times more than in the absence of the apolipoproteins while the rate of spontaneous transfer was not affected significantly by the apolipoproteins. Bovine serum albumin did not have such an effect. Furthermore, the enhancement of the lipid transfer protein reaction by apolipoprotein A-I was linearly proportional to the percent saturation of the surface of the microemulsion with the apolipoprotein.  相似文献   

3.
Insect plasma lipid transfer particle (LTP) catalyzes vectorial net transfer of diacylglycerol (DAG) from Manduca sexta larval high density lipophorin (HDLp-L) to human low density lipoprotein (LDL) producing an LDL of lower density and lipophorin subspecies of higher density. At equilibrium, a stable DAG-depleted very high density lipophorin species (density = 1.25 g/ml) is formed. Electrophoretic analysis of the substrate and product lipoproteins showed that apoprotein exchange or transfer between human LDL and lipophorin did not occur during the lipid transfer reaction. Facilitated net transfer of cholesteryl ester, free cholesterol, and phospholipid occurred to a much lower extent than DAG net transfer, indicating that under these conditions, LDL serves as a sink for lipophorin-associated DAG. This reaction, therefore, provides a method whereby the mass of lipid associated with human LDL can be modified in vitro without alteration of its apoprotein component. The DAG content of LDL increased in a linear manner with respect to LTP concentration and time during the initial phase of the reaction, demonstrating the utility of this system as a quantitative assay method for LTP-mediated net DAG transfer. When [3H]DAG-labeled LDL was prepared and employed in transfer experiments with unlabeled lipophorin, labeled DAG was recovered in the HDLp-L fraction. The amount of labeled DAG recovered in the HDLp-L fraction was dependent on the ratio of LDL to HDLp-L in the reaction. Thus, in this system, LTP-mediated DAG redistribution is bidirectional, suggesting that the final equilibrium distribution of lipid may be dictated by the properties of potential donor/acceptor lipoproteins rather than by an inherent particle substrate specificity of LTP.  相似文献   

4.
Transfer of lipids was studied between human plasma low density lipoproteins (LDL) and triolein particles coated with an egg phosphatidylcholine monolayer, with diameter of 27 +/- 4 nm. The lipid particles were unstable and seemed to aggregate to LDL when incubated with LDL either in the presence or the absence of bovine serum albumin. Human apolipoproteins A-I, A-II, C-II, C-III, and E stabilized the lipid particles and completely prevented this process. Cholesterol rapidly appeared in the lipid particles to reach homogeneous distribution among the phospholipid surfaces of LDL and the lipid particles regardless of whether apolipoproteins were present or absent. Cholesteryl ester spontaneously appeared in the lipid particles to some extent in the absence of the apolipoproteins, and human plasma lipid transfer protein enhanced this reaction only to a very limited extend. When the lipid particles were stabilized with the apolipoproteins, spontaneous cholesteryl ester transfer was minimized and the lipid transfer protein catalyzed the transfer of cholesteryl ester markedly. There was no specific difference among the apolipoproteins in stabilizing the particles and enhancing the transfer reaction. Reciprocal decrease in volume of triglyceride was observed at the same time in the lipid particles until the relative content of cholesteryl ester in the cores of LDL was the same as in the lipid particles. The kinetics of the cholesteryl ester and triglyceride transfer was consistent with the model that the reaction is bidirectional in equilibrium and takes both non-polar lipids as substrate in a single pool.  相似文献   

5.
Human microsomal triacylglycerol transfer protein (hMTP) is essential for apolipoprotein B (apoB)-lipoprotein assembly and secretion and is known to transfer triacylglycerols, cholesterol esters, and phospholipids. To understand the relative importance of each lipid transfer activity, we compared the ability of hMTP and its Drosophila ortholog (dMTP) to assemble apoB lipoproteins and to transfer various lipids. apoB48 secretion was induced when co-expressed with either hMTP or dMTP in COS cells, and oleic acid supplementation further augmented secretion without altering particle density. C-terminal epitope-tagged dMTP (dMTP-FLAG) facilitated the secretion of apoB polypeptides in the range of apoB48 to apoB72 but was approximately 50% as efficient as hMTP-FLAG. Comparison of lipid transfer activities revealed that although phospholipid transfer was similar in both orthologs, dMTP was unable to transfer neutral lipids. We conclude that the phospholipid transfer activity of MTP is sufficient for the assembly and secretion of primordial apoB lipoproteins and may represent its earliest function evolved for the mobilization of lipid in invertebrates. Identification of MTP inhibitors, which selectively affect transfer of a specific lipid class, may have therapeutic potential.  相似文献   

6.
Free cholesterol is a potent regulator of lipid transfer protein function   总被引:6,自引:0,他引:6  
This study investigates the effect of altered lipoprotein free cholesterol (FC) content on the transfer of cholesteryl ester (CE) and triglyceride (TG) from very low- (VLDL), low- (LDL), and high-(HDL) density lipoproteins by the plasma-derived lipid transfer protein (LTP). The FC content of VLDL and HDL was selectively altered by incubating these lipoproteins with FC/phospholipid dispersions of varying composition. FC-modified lipoproteins were then equilibrated with [3H] TG, [14C]CE-labeled lipoproteins of another class to facilitate the subsequent modification of the radiolabeled donor lipoproteins. LTP was added and the extent of radiolabeled TG and CE transfer determined after 1 h. With either LDL or VLDL as lipid donor, an increase in the FC content of these lipoproteins caused a concentration-dependent inhibition (up to 50%) of CE transfer from these particles, without any significant effect on TG transfer. In contrast, with HDL as donor, increasing the HDL FC content had little effect on CE transfer from HDL, but markedly stimulated (up to 2.5-fold) the transfer of TG. This differential effect of FC on the unidirectional transfer of radiolabeled lipids from VLDL and HDL led to marked effects on LTP-facilitated net mass transfer of lipids. During long-term incubation of a constant amount of LTP with FC-modified VLDL and HDL, the extent of net mass transfer was linearly related to lipoprotein FC content; a 4-fold increase in FC content resulted in a 3-fold stimulation of the CE mass transferred to VLDL, which was coupled to an equimolar, reciprocal transfer of TG mass to HDL. Since lipid transfer between lipoproteins is integral to the process of reverse cholesterol transport, we conclude that lipoprotein FC levels are a potent, positive regulator of the pathways involved in sterol clearance. FC may modulate lipid transfer by altering the availability of CE and TG to LTP at the lipoprotein surface.  相似文献   

7.
The mechanism of facilitated lipid transfer by insect or mammalian plasma lipid transfer proteins has not been elucidated. Transfer catalysts may act as carriers of lipid between donor and acceptor lipoproteins or, alternatively, transfer may require formation of a ternary complex. This study was designed to determine if Manduca sexta hemolymph lipid transfer particle (LTP) can facilitate net vectorial transfer of lipid without concomitant contact between donor and acceptor lipoproteins and LTP. M. sexta [3H]diacylglycerol-high density lipophorin-larval ([3H]DAG-HDLp-L) and human low density lipoprotein (LDL) were covalently bound to Sepharose matrices and packed into separate columns. In incubations lacking LTP, greater than 98% of the recovered DAG remained associated with HDLp-L. An unrelated hemolymph storage protein, arylphorin, was unable to catalyze the transfer of DAG between solid-phase lipoproteins. Facilitated transfer of DAG from HDLp-L to LDL was observed when LTP was circulated between the columns. Under these conditions, facilitated transfer occurred at a rate of 2.24 ng of DAG/h (versus 0.16 microgram of DAG/h in the control), and after 16 h greater than 26% of recovered labeled DAG was transferred to LDL. This corresponds to a 14-fold rate enhancement induced by LTP. The LTP-specific transfer of DAG between physically separated lipoproteins demonstrates the ability of LTP to facilitate net lipid transfer via a carrier-mediated mechanism in the absence of a ternary complex involving donor, acceptor, and catalyst. In experiments aimed at assessing the relative contribution of ternary complex formation to DAG transfer, acceptor LDL was circulated with HDLp-L remaining immobilized. Under these conditions, LTP induced a 13-fold rate enhancement from 1.3 to 16.3 micrograms of DAG/h. The similar rate enhancements observed with both lipoproteins bound and only donor bound suggest the overall contribution of ternary complex formation to facilitated lipid transfer is insignificant. The described system should prove useful in mechanistic studies of other transfer proteins as well as studies of transfer of other lipids.  相似文献   

8.
To better understand the mechanism of lipid transfer protein (LTP) action and the effects of altered lipoprotein composition on its activity, we evaluated the dependence of LTP activity on the concentrations of cholesteryl ester (CE) and/or triglyceride (TG) in the phospholipid bilayer of substrate particles. Phosphatidylcholine (PC)-cholesterol liposomes containing up to 2 mole% TG and/or CE were prepared by cholate dialysis and used as either the donor of lipids to, or the acceptor of lipids from, low density lipoproteins (LDL). CE or TG transfer from liposomes of varying neutral lipid content to LDL showed saturation kinetics with an apparent Km of less than or equal to 0.2 mole%. Throughout this concentration-dependent response. PC transfer, which depended on the same LTP-donor particle binding interactions as those required for neutral lipid transfer, was essentially unchanged. Lipid transfer in the reverse direction (from LDL to liposomes of varying neutral lipid content) followed the same kinetics showing that transfer between the two particles is tightly coupled and bidirectional. When liposomes contained both TG and CE, these lipids competed for transfer in a manner analogous to that previously noted with lipoprotein substrates. In conclusion, CE and TG transfer activities are determined by the concentration of these lipids in the phospholipid surface of donor and acceptor particles. At low TG and CE concentrations, LTP bound to the liposome surface as indicated by PC transfer, but only a portion of these interactions actually facilitated a neutral lipid transfer event. Thus, the overall rate of neutral lipid transfer, and the competition between TG and CE for transfer, depend on the concentrations of these lipids in the phospholipid layer.  相似文献   

9.
To explore the interactions of triacylglycerol and phospholipid hydrolysis in lipoprotein conversions and remodeling, we compared the activities of lipoprotein and hepatic lipases on human VLDL, IDL, LDL, and HDL2. Triacylglycerol and phospholipid hydrolysis by each enzyme were measured concomitantly in each lipoprotein class by measuring hydrolysis of [14C]triolein and [3H]dipalmitoylphosphatidylcholine incorporated into each lipoprotein by lipid transfer processes. Hepatic lipase was 2-3 times more efficient than lipoprotein lipase at hydrolyzing phospholipid both in absolute terms and in relation to triacylglycerol hydrolysis in all lipoproteins. The relationship between phospholipid hydrolysis and triacylglycerol hydrolysis was generally linear until half of particle triacylglycerol was hydrolyzed. For either enzyme acting on a single lipoprotein fraction, the degree of phosphohydrolysis closely correlated with triacylglycerol hydrolysis and was largely independent of the kinetics of hydrolysis, suggesting that triacylglycerol removed from a lipoprotein core is an important determinant of phospholipid removal via hydrolysis by the lipase. Phospholipid hydrolysis relative to triacylglycerol hydrolysis was most efficient in VLDL followed in descending order by IDL, HDL, and LDL. Even with hepatic lipase, phospholipid hydrolysis could not deplete VLDL and IDL of sufficient phospholipid molecules to account for the loss of surface phospholipid that accompanies triacylglycerol hydrolysis and decreasing core volume as LDL is formed (or for conversion of HDL2 to HDL3). Thus, shedding of whole phospholipid molecules, presumably in liposomal-like particles, must be a major mechanism for losing excess surface lipid as large lipoprotein particles are converted to smaller particles. Also, this shedding phenomenon, like phospholipid hydrolysis, is closely related to the hydrolysis of lipoprotein triacylglycerol.  相似文献   

10.
In this study we examined the transfer of lipids between reconstituted high density lipoprotein discs (r-HDL) and human low density lipoproteins (LDL) in the presence and absence of lecithin:cholesterol acyltransferase (LCAT) or of plasma phospholipid transfer protein (PLTP). We found that spontaneous transfer of phospholipids from r-HDL to LDL occurred by an apparent first order reaction with a half-time of 5.8 to 6.9 hr depending on the phospholipid. During the time of incubation of r-HDL with LDL (from 0 to 25 hr), the phospholipid content of r-HDL decreased more than 30%, the free cholesterol content increased 2.5-fold, and low levels of cholesteryl esters appeared in r-HDL. These compositional changes gave rise to small discoidal particles with a limiting diameter of 77 A and two molecules of apoA-I per particle. When LCAT was included in the reaction mixture, the r-HDL lost even more phospholipid, lost some free cholesterol, and gained cholesteryl esters relative to the apolipoprotein content, due to the enzymatic reaction. The products of the LCAT reaction had a diameter of 93 A and three, rather than two, apoA-I molecules per particle. Inclusion of PLTP into the reaction mixture accelerated the transfer of phospholipids (half-time of 1.7 hr) and the formation of the 77 A product. In addition to these compositional and morphological changes, which may be important in the interconversions of native HDL subspecies, the prolonged incubations revealed some slow reactions, such as the esterification of LDL cholesterol by LCAT, a background formation of cholesteryl esters in r-HDL, and an apparent hydrolysis of cholesteryl esters in LDL in the presence of r-HDL.  相似文献   

11.
12.
Manduca sexta hemolymph lipid transfer particle (LTP) is a very high density lipoprotein (d = 1.23 g/ml) containing 14% lipid and 5% carbohydrate. Each of three apoprotein components, apoLTP-I (Mr approximately 320,000), apoLTP-II (Mr = 85,000), and apoLTP-III (Mr = 55,000), is glycosylated. Carbohydrate analysis revealed the presence of mannose and N-acetylglucosamine in a ratio of 4.5:1. A native Mr greater than 670,000 was determined by pore limiting gradient gel electrophoresis. Lipid analysis of LTP revealed the presence of phospholipid, diacylglycerol (DAG), free fatty acid, and triacylglycerol. Rabbit polyclonal antibodies directed against LTP were obtained. Anti-LTP serum was employed in experiments which indicated the presence of LTP in larval and adult animals and confirmed that LTP was unrelated to other M. sexta hemolymph proteins and lipoproteins. A quantitative lipid transfer assay measuring facilitated DAG exchange between isolated M. sexta lipoproteins was established. The level of LTP-catalyzed exchange of DAG increased linearly with increasing time and protein during the initial phase of the reaction. Inclusion of anti-LTP serum in the assay inhibited facilitated DAG exchange. Experiments designed to determine if the LTP holoprotein is required for transfer or if a component of LTP is the active principle were performed. Incubation of [3H]DAG labeled high density lipophorin with substrate amounts of LTP resulted in incorporation of labeled DAG into LTP. Subsequent incubation of [3H]DAG-labeled LTP with unlabeled lipophorin resulted in exchange of DAG and the appearance of labeled DAG in lipophorin. Nitrocellulose-bound LTP apoproteins did not facilitate DAG exchange, and pretreatment of LTP with detergents resulted in loss of transfer activity. Extraction of LTP lipids with ethanol/ether also resulted in loss of activity. The results suggest that the lipid component of LTP may be important in the transfer reaction.  相似文献   

13.
P J Spooner  D M Small 《Biochemistry》1987,26(18):5820-5825
Triacylglycerols are the major substrates for lipolytic enzymes that act at the surface of emulsion-like particles such as triglyceride-rich lipoproteins, chylomicrons, and intracellular lipid droplets. This study examines the effect of cholesterol on the solubility of a triacylglycerol, triolein, in phospholipid surfaces. Solubilities of [carbonyl-13C]triolein in phospholipid bilayer vesicles containing between 0 and 50 mol % free cholesterol, prepared by cosonication, were measured by 13C NMR. The carbonyl resonances from bilayer-incorporated triglyceride were shifted downfield in the 13C NMR spectra from those corresponding to excess, nonincorporated material. This enabled solubilities to be determined directly from carbonyl peak intensities at most cholesterol concentrations. The bilayer solubility of triolein was inversely proportional to the cholesterol/phospholipid mole ratio. In pure phospholipid vesicles the triolein solubility was 2.2 mol %. The triglyceride incorporation decreased to 1.1 mol % at a cholesterol/phospholipid mole ratio of 0.5, and at a mole ratio of 1.0 for the bilayer lipids, the triolein solubility was reduced to just 0.15 mol %. The effects of free cholesterol were more pronounced and progressive than observed previously on the bilayer solubility of cholesteryl oleate (Spooner, P. J. R., Hamilton, J. A., Gantz, D. L., & Small, D. M. (1986) Biochim. Biophys. Acta 860, 345-353]. As with cholesteryl oleate, we suggest that cholesterol also displaces solubilized triglyceride to deeper regions of the bilayer.  相似文献   

14.
The modulation of substrate selectivity of human plasma LTP reaction is the subject of the present investigation. The moderate selectivity by a factor of 5 to 6 was observed in the LTP-catalyzed transfer of cholesteryl ester over triacylglycerol between plasma lipoproteins. On the other hand, the transfer of cholesteryl ester by LTP was highly selective over the negligible transfer of triacylglycerol, by a factor of 60 to 500, between the microemulsions with LDL size, regardless of the activators such as human and pig apolipoprotein (apo) A-I, human apo C-III and apo E that bound to the surface of the emulsion in equilibrium. The presence of free cholesterol in these microemulsions reduced slightly the rate of cholesteryl ester transfer but had no effect on triacylglycerol transfer. Other surface-active reagents such as cholic acid, Triton X-100 and Tween-20, did not have an effect on the triacylglycerol transfer either. Triacylglycerol transfer by LTP became measurable between such lipid particles as prepared by co-sonication of lipid with pig apo A-I and isolated as the mixed-microemulsions in the density of LDL and HDL. In these conditions, the substrate selectivity for cholesteryl ester over triacylglycerol was a factor of 6 to 16 mimicking the ratio in plasma lipoproteins. The conformation of pig apo A-I estimated by circular dichroism showed that its apparent helical content was further more induced when apo A-I was integrated into the mixed-microemulsion by co-sonication than the lipid-bound apo A-I in equilibrium. Apo A-I, thus integrated into lipid particles, was highly resistant to the denaturation by guanidine hydrochloride while the lipid-bound apo A-I in equilibrium was denatured as readily as the lipid-free protein. Thus, triacylglycerol transfer by LTP was induced by structural modulation of substrate-carrying lipid particles such as higher integration of apolipoproteins.  相似文献   

15.
Intact rats removed more radiolabelled triacylglycerol, cholesterol, and cholesterol ester but not phosphatidylcholine (PC) in the first 6 min than hepatectomized rats. There was no difference between intact and hepatectomized rats in the transfer of radiolabelled chylomicron lipids to other lipoproteins. Specific radioactivity measurements demonstrated a net transfer of PC (intact and hepatectomized rats) and unesterified cholesterol (intact rats only) onto both the low density lipoprotein/high density lipoprotein-1 (LDL/HDL1) and HDL2 fractions. [3H]Fatty acids were rapidly incorporated into blood cell phospholipids and into HDL and LDL cholesterol esters of both intact and hepatectomized rats. Substantial rearrangements of [3H]palmitate occurred during lipid uptake by liver.  相似文献   

16.
The mechanism of action of hepatic triacylglycerol lipase (EC 3.1.1.3) was examined by comparing the hydrolysis of a water-soluble substrate, tributyrin, with that of triolein by hepatic triacylglycerol lipase purified from human post-heparin plasma. The hydrolyzing activities toward tributyrin and triolein were coeluted from heparin-Sepharose at an NaCl concentration of 0.7 M. The maximal velocity of hepatic triacylglycerol lipase (Vmax) for tributyrin was 17.9 mumol/mg protein per h and the Michaelis constant (Km) value was 0.12 mM, whereas the Vmax for triolein was 76 mumol/mg per h and the Km value was 2.5 mM. The hydrolyses of tributyrin and triolein by hepatic triacylglycerol lipase were inhibited to similar extends by procainamide, NaF, Zn2+, Cu2+, Mn2+, SDS and sodium deoxycholate. Triolein hydrolysis was inhibited by the addition of tributyrin. Triolein hydrolysis was also inhibited by the addition of dipalmitoylphosphaidylcholine vesicles. In contrast, the additions of triolein emulsified with Triton X-100 and dipalmitoylphosphatidylcholine vesicles enhanced the rate of tributyrin hydrolysis by hepatic triacylglycerol lipase. In the presence of dipalmitoylphosphatidylcholine, the Vmax and Km values of hepatic triacylglycerol lipase for tributyrin were 41 mumol/mg protein per h and 0.12 mM, respectively, indicating that the enhancement of hepatic triacylglycerol lipase activity for tributyrin by dipalmitoylphosphatidycholine vesicles was mainly due to increase in the Vmax. The enhancement of hepatic triacylglycerol lipase activity for tributyrin by phospholipid was not correlated with the amount of tributyrin associated with the phospholipid vesicles. On Bio-Gel A5m column chromatography, glycerol tri[1-14C]butyrate was not coeluted with triolein emulsion, and hepatic triacylglycerol lipase activity was associated with triolein emulsion even in the presence of 2 mM tributyrin. These results suggest that hepatic triacylglycerol lipase has a catalytic site for esterase activity and a separate site for lipid interface recognition, and that on binding to a lipid interface the conformation of the enzyme changes, resulting in enhancement of the esterase activity.  相似文献   

17.
Adipocyte differentiation-related protein (ADrP) is an intrinsic lipid storage droplet protein that is highly expressed in lung. ADrP localizes to lipid storage droplets within lipofibroblasts, pulmonary cells characterized by high triacylglycerol, which is a precursor for surfactant phospholipid synthesis by alveolar type II epithelial (EPII) cells. The developmental pattern of ADrP mRNA and protein expression in lung tissue parallels triacylglycerol accumulation in rat lung. ADrP mRNA levels are relatively high in isolated lipofibroblasts, accounting for the high ADrP expression in lung. Isolated EPII cells, which do not store neutral lipids but derive them from lipofibroblasts, have low levels of ADrP mRNA expression. ADrP is found around lipid droplets in cultured lipofibroblasts, but not in EPII cells isolated from developing rat lung. After coculture with lipofibroblasts, EPII cells acquired ADrP, which associates with lipid droplets. Furthermore, (3)H-labeled triolein in isolated ADrP-coated lipid droplets is a tenfold better substrate for surfactant phospholipid synthesis by cultured EPII cells than (3)H-labeled synthetic triolein alone. Antibodies to ADrP block transfer of neutral lipid. These data suggest a role for ADrP in this novel mechanism for the transfer of lipid between lipofibroblasts and EPII cells.  相似文献   

18.
During gestation in the viviparous lizard Pseudemoia entrecasteauxii, the fetus obtains nutrients from two sources: uptake of yolk components from the retained egg (lecithotrophy) and transfer of nutrients from the maternal circulation via the placenta (placentotrophy). Although net placentotrophy in this species is indicated by the observation that the neonate contains 1.7 times more dry matter than the egg, the placental transfer of lipid has not been previously demonstrated. Lipid analysis was performed on newly ovulated eggs and on neonates. The weight of total lipid per neonate (8.2+/-0.5 mg) is significantly (P=0.049) greater than that in the egg (6.8+/-0.4 mg), indicating that the placenta must contribute some lipid to the fetus. On the assumption that 50% of the lipid delivered to the fetus from either source is oxidized for energy, it is calculated that the placenta accounts for 58.5% of the fetal lipid requirements, with the remaining 41.5% being derived from the egg. The fatty acid compositions of the triacylglycerol and phospholipid recovered in the neonatal tissue differ substantially from those of the egg. In particular, the proportions of 18:2n-6 and 18:3n-3 are far lower in the neonatal lipids compared with the egg lipids. On the other hand, the proportion of 22:6n-3 in the phospholipid of the neonate is six times higher than in the phospholipid of the egg. The absolute amount (mg) of 22:6n-3 recovered in the total lipid of the neonate is 3.8 times greater than the amount initially present in the egg. By comparison, the amount of total fatty acid in neonatal lipid is 1.2 times greater than the amount in the egg. Thus, there is a preferential use of 22:6n-3 for tissue phospholipid synthesis during development. We conclude that there is net transfer of fatty acids across the placenta to the fetus of P. entrecasteauxii and a high degree of selectivity in the use of the various fatty acids for fetal tissue lipid synthesis.  相似文献   

19.
There are inverse relationships between HDL cholesterol and plasma triacylglycerol concentrations in normal and in hypertriglyceridemic individuals. To investigate the interactions between triacylglycerol-rich lipid particles and HDL, a lipid emulsion model of the triacylglycerol-rich lipoproteins was prepared. When emulsion particles were incubated with rat high-density lipoproteins (HDL) in the presence of lipid transfer activity (d greater than 1.21 g/ml fractions) from rabbit or human plasma there was a rapid bi-directional exchange of cholesteryl oleate (CO) and phospholipid (PL) labels between lighter and heavier fractions of HDL and emulsion particles. The transfers of CO and PL labels between both light and heavy fractions of HDL and the emulsion particles were increased with increasing amounts of emulsion added to the incubations. Incubation with the d greater than 1.21 g/ml fraction from rat plasma resulted in only a small exchange of CO whereas PL exchange was similar to rabbit and human plasma. Retinyl palmitate label was not transferred from emulsion particles to the HDL fractions even in the presence of lipid transfer activity from rabbit or human plasma. The present study shows that the transfer protein-mediated exchanges of surface and core lipids between HDL and the triacylglycerol-rich lipoproteins are affected by the quantity of triacylglycerol-rich particles in the system. This mechanism may contribute to the inverse relationships between plasma triacylglycerol concentrations and HDL concentrations in normal and hypertriglyceridemic individuals.  相似文献   

20.
Metabolism of protein-free lipid emulsion models of chylomicrons in rats   总被引:4,自引:0,他引:4  
Emulsions were prepared by ultrasonication of mixtures of triolein, cholesteryl oleate, phosphatidylcholine and cholesterol in aqueous dispersions, then purified by ultracentrifugation. After injection into rats, the metabolism of the artificial, protein-free emulsions was comparable to the metabolism of chylomicrons collected from rat intestinal lymph during the absorption of fat. Like chylomicrons, the emulsion triacylglycerol was removed from the plasma more quickly than emulsion cholesteryl ester. Also like chylomicrons, much more emulsion cholesteryl ester than triacylglycerol appeared in the liver 10 min after injection, and only trace amounts appeared in the spleen. Because the artificial emulsions gained apolipoproteins when incubated with plasma, their metabolism was probably facilitated by the recipient rat plasma apolipoproteins and so, in rats made apolipoprotein-deficient by treatment with estrogen, the removal of emulsions from the plasma was slowed. Removal was also slowed in hyperlipidemic rats fed a high-fat, high-cholesterol diet to expand the plasma pools of the triacylglycerol-rich lipoproteins and remnants. The results indicate that the metabolism of lymph chylomicrons can be modeled by artificial, protein-free lipid emulsions not only in the initial partial hydrolysis by lipoprotein lipase, but also in the delivery of a remnant-like particle to the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号