首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here a recombinant Chinese hamster ovary cell system,which is able to stably express frog peptidylglycine alpha-hydroxylating monooxygenase (PHM, EC 1.14.17.3), the first enzyme responsible for the formation of peptide C-terminal amide. This system excreted PHM mostly into the medium and almost no PHM activity was detected in the cell lysate. Three differentiation inducers were examined to determine whether or not they would enhance the PHM expression. Addition of 4mM sodium butyrate into the medium increased the expression of PHM activity about 4-fold at 48 h after addition. Increases of about 2-fold were observed in the cases of sodium propionate or N,N(')-hexamethylene-bis-acetamide. Through a three-step purification procedure, we obtained 5mg purified PHM, which showed a single band at 40 kDa on SDS-PAGE, from 2-L of conventional monolayer culture medium. The reactions with three synthetic substrates, D-Tyr-Val-Gly, N-trinitrophenyl-D-Tyr-Val-Gly (TNPYVG), and hippuric acid (HA), were characterized. Of these, TNPYVG was the most active substrate. The pH optima for TNPYVG and HA were pH 5-6, while that for D-Tyr-Val-Gly was pH 7.5. There is a possibility that the substrate N-terminal structure may affect the interaction between the substrate and the enzyme catalytic site.  相似文献   

2.
Peptide amidation is a ubiquitous posttranslational modification of bioactive peptides. Peptidylglycine alpha-hydroxylating monooxygenase (PHM; EC 1.14.17.3), the enzyme that catalyzes the first step of this reaction, is composed of two domains, each of which binds one copper atom. The coppers are held 11 A apart on either side of a solvent-filled interdomain cleft, and the PHM reaction requires electron transfer between these sites. A plausible mechanism for electron transfer might involve interdomain motion to decrease the distance between the copper atoms. Our experiments show that PHM catalytic core (PHMcc) is enzymatically active in the crystal phase, where interdomain motion is not possible. Instead, structures of two states relevant to catalysis indicate that water, substrate and active site residues may provide an electron transfer pathway that exists only during the PHM catalytic cycle.  相似文献   

3.
Cnidarians are primitive animals that use neuropeptides as their transmitters. All the numerous cnidarian neuropeptides isolated, so far, have a carboxy-terminal amide group that is essential for their actions. This strongly suggests that alpha-amidating enzymes are essential for the functioning of primitive nervous systems. In mammals, peptide amidation is catalyzed by two enzymes, peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) that act sequentially. These two activities are contained within one bifunctional enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), which is coded for by a single gene. In a previous paper (F. Hauser et al., Biochem. Biophys. Res. Commun. 241, 509-512, 1997) we have cloned the first known cnidarian PHM from the sea anemone Calliactis parasitica. In the present paper we have determined the structure of its gene (CP1). CP1 is >12 kb in size and contains 15 exons and 14 introns. The last coding exon (exon 15) contains a stop codon, leaving no room for PAL and, thereby, for a bifunctional PAM enzyme as in mammals. Furthermore, we found a CP1 splicing variant (CP1-B) that contains exon-9 instead of exon-8, which was present in the previously characterized PHM cDNA (CP1-A). CP1-A and -B have 97% amino acid sequence identity, whereas both splicing variants have around 42% sequence identity with the PHM part of rat PAM. Essential amino acid residues for the catalytic activity and the 3D structure of PHM are conserved between CP1-A, -B and the PHM part of rat PAM. Furthermore, eight introns in CP1 occur in the same positions and have the same intron phasing as eight introns in the rat PAM gene, showing that the sea anemone PHM is not only structurally, but also evolutionarily related to the PHM part of rat PAM.  相似文献   

4.
Dopamine beta-monooxygenase (DBM) and peptidylglycine alpha-hydroxylating monooxygenase (PHM) are essential for the biosynthesis of catecholamines and amidated peptides, respectively. The enzymes share a conserved catalytic core. We studied the role of the DBM signal sequence by appending it to soluble PHM (PHMs) and expressing the DBMsignal/PHMs chimera in AtT-20 and Chinese hamster ovary cells. PHMs produced as part of DBMsignal/PHMs was active. In vitro translated and cellular DBMsignal/PHMs had similar masses, indicating that the DBM signal was not removed. DBMsignal/PHMs was membrane-associated and had the properties of an intrinsic membrane protein. After in vitro translation in the presence of microsomal membranes, trypsin treatment removed 2 kDa from DBMsignal/PHMs while PHMs was entirely protected. In addition, a Cys residue in DBMsignal/PHMs was accessible to Cys-directed biotinylation. Thus the chimera adopts the topology of a type II membrane protein. Pulse-chase experiments indicate that DBMsignal/PHMs turns over rapidly after exiting the trans-Golgi network. Although PHMs is efficiently localized to secretory granules, DBMsignal/PHMs is largely localized to the endoplasmic reticulum in AtT-20 cells. On the basis of stimulated secretion, the small amount of PHMs generated is stored in secretory granules. In contrast, the expression of DBMsignal/PHMs in PC12 cells yields protein that is localized to secretory granules.  相似文献   

5.
Many bioactive peptides require amidation of their carboxy terminus to exhibit full biological activity. Peptidylglycine alpha-hydroxylating monooxygenase (PHM; EC 1.14.17.3), the enzyme that catalyzes the first of the two steps of this reaction, is composed of two domains, each of which binds one copper atom (CuH and CuM). The CuM site includes Met(314) and two His residues as ligands. Mutation of Met(314) to Ile inactivates PHM, but has only a minimal effect on the EXAFS spectrum of the oxidized enzyme, implying that it contributes only marginally to stabilization of the CuM site. To characterize the role of Met(314) as a CuM ligand, we determined the structure of the Met(314)Ile-PHM mutant. Since the mutant protein failed to crystallize in the conditions of the original wild-type protein, this structure determination required finding a new crystal form. The Met(314)Ile-PHM mutant structure confirms that the mutation does not abolish CuM binding to the enzyme, but causes other structural perturbations that affect the overall stability of the enzyme and the integrity of the CuH site. To eliminate possible effects of crystal contacts, we redetermined the structure of wt-PHM in the Met(314)Ile-PHM crystal form and showed that it does not differ from the structure of wild-type (wt)-PHM in the original crystals. Met(314)Ile-PHM was also shown to be less stable than wt-PHM by differential scanning calorimetry. Both structural and calorimetric studies point to a structural role for the CuM site, in addition to its established catalytic role.  相似文献   

6.
The C-terminal amide structure of peptide hormones and neurotransmitters is synthesized via a two-step reaction catalyzed by peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidylhydroxyglycine N-C lyase. A Xenopus laevis PHM expressed in insect-cell culture by the baculovirus-expression-vector system was purified to homogeneity and characterized. Using a newly established assay system for PHM, the kinetic features of this enzyme were investigated. As expected, the enzyme required copper ions, L-ascorbate and molecular oxygen for turnover. Salts like KI and KCl, and catalase stabilized the enzyme in the presence of L-ascorbate. The optimum pH value for the enzyme reaction was around six when Mes buffer was used and around seven when phosphate buffer was used under the same assay condition. Below pH 6, acetate, iodide and chloride ions activated the reaction. The kinetic analysis is consistent with a ping-pong mechanism with respect to peptide and L-ascorbate, and the peptide showed substrate inhibition. The substrate specificity of the enzyme at the penultimate position was examined by competitive assay using tripeptides with glycine at the C-termini and the inhibitory potency of these peptides in descending order was methionine > aromatic > non-polar amino acids.  相似文献   

7.
Peptidyl alpha-hydroxylating monooxygenase (PHM) functions in vivo towards the biosynthesis of alpha-amidated peptide hormones in mammals and insects. PHM is a potential target for the development of inhibitors as drugs for the treatment of human disease and as insecticides for the management of insect pests. We show here that relatively simple ground state analogs of the PHM substrate hippuric acid (C(6)H(5)-CO-NH-CH(2)-COOH) inhibit the enzyme with K(i) values as low as 0.5microM. Substitution of sulfur atom(s) into the hippuric acid analog increases the affinity of PHM for the inhibitor. Replacement of the acetylglycine moiety, -CO-NH-CH(2)-COOH with an S-(thioacetyl)thioglycolic acid moiety, -CS-S-CH(2)-COOH, yields compounds with the highest PHM affinity. Both S-(2-phenylthioacetyl)thioglycolate and S-(4-ethylthiobenzoyl)thioglycolic acid inhibit the proliferation of cultured human prostate cancer cells at concentrations >100-fold excess of their respective K(i) values. Comparison of K(i) values between mammalian PHM and insect PHM shows differences in potency suggesting that a PHM-based insecticide with limited human toxicity can be developed.  相似文献   

8.
The pH dependence of the PHM-catalyzed monooxygenation of dansyl-YVG was studied in two different buffer systems in the pH range of 4-10. The pH-activity profile measured in a sulfonic acid buffer exhibited a maximum at pH 5.8 and became inactive at pH >9. The data could be fit to a model that assumed a protonated unreactive species A, a major reactive species B, and a less reactive species C. B formed in a deprotonation step with pK(a) of 4.6, while C formed and decayed with pK(a)s of 6.8 and 8.2, respectively. The pH dependence was found to be dominated by k(cat), with K(m)(dansyl-YVG) remaining pH-independent over the pH range of 5-8. Acetate-containing buffers shifted the pH maximum to 7.0, and the activity-pH profile could be simulated by formation and decay of a single active species with pK(a)s of 5.8 and 8.3, respectively. The pH-dependent changes in activity could be correlated with a change in the Debye-Waller factor for the Cu-S(met) (M314) component of the X-ray absorption spectrum which underwent a transition from a tightly bound inactive "met-on" form to a conformationally mobile active "met-off" form with a pK(a) which tracked the formation of the active species in both sulfonic acid and acetate-containing buffer systems. The data suggested that the conformational mobility of the bound substrate relative to the copper-superoxo active species is critical to catalysis and further suggested the presence of an accessible vibrational mode coupling Cu-S motion to the H tunneling probability along the Cu-O...H...C coordinate.  相似文献   

9.
10.
Peptidylglycine alpha-hydroxylating monooxygenase (PHM) and dopamine beta-monooxygenase (DbetaM) are homologous copper-containing enzymes that catalyze an oxygen-dependent hydroxylation of peptide-extended glycine residues and phenethylamines, respectively. The mechanism whereby these enzymes activate molecular oxygen and the C-H bond of substrate has been the subject of numerous studies, and various mechanisms have been put forth. From the magnitude of (18)O isotope effects as a function of substrate structure in DbetaM, an active site tyrosine had been proposed to function in the reductive activation of Cu(II)-OOH to generate a reactive copper-oxo species [Tian et al. (1994) Biochemistry 33, 226]. The presence of a tyrosine residue, Y318, in the active site of PHM was subsequently confirmed from crystallographic studies [Prigge et al. (1997) Science 278, 1300]. We now report extensive kinetic and isotope effect studies on the Y318F mutant form of PHM, analyzing the role of this tyrosine in the catalytic mechanism. It is found that the Y318F mutant has intrinsic hydrogen and (18)O isotope effects that are within experimental error of the wild-type enzyme and that the mutation causes only a slight reduction in the rate constant for C-H bond cleavage. These findings, together with the recent demonstration that C-H activation in PHM is dominated by quantum mechanical tunneling [Francisco et al. (2002) J. Am. Chem. Soc. 124, 8194], necessitate a reexamination of plausible mechanisms for this unique class of copper enzymes.  相似文献   

11.
Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent enzyme that catalyzes the transfer of a methyl group from glycine betaine (Bet) to homocysteine (Hcy) to form dimethylglycine (DMG) and methionine (Met). Previous studies in other laboratories have indicated that catalysis proceeds through the formation of a ternary complex, with a transition state mimicked by the inhibitor S-(delta-carboxybutyl)-l-homocysteine (CBHcy). Using changes in intrinsic tryptophan fluorescence to determine the affinity of human BHMT for substrates, products, or CBHcy, we now demonstrate that the enzyme-substrate complex reaches its transition state through an ordered bi-bi mechanism in which Hcy is the first substrate to bind and Met is the last product released. Hcy, Met, and CBHcy bind to the enzyme to form binary complexes with K(d) values of 7.9, 6.9, and 0.28 microM, respectively. Binary complexes with Bet and DMG cannot be detected with fluorescence as a probe, but Bet and DMG bind tightly to BHMT-Hcy to form ternary complexes with K(d) values of 1.1 and 0.73 microM, respectively. Mutation of each of the seven tryptophan residues in human BHMT provides evidence that the enzyme undergoes two distinct conformational changes that are reflected in the fluorescence of the enzyme. The first is induced when Hcy binds, and the second, when Bet binds. As predicted by the crystal structure of BHMT, the amino acids Trp44 and Tyr160 are involved in binding Bet, and Glu159 in binding Hcy. Replacing these residues by site-directed mutagenesis significantly reduces the catalytic efficiency (V(max)/K(m)) of the enzyme. Replacing Tyr77 with Phe abolishes enzyme activity.  相似文献   

12.
A frog 'peptidylglycine alpha-amidating monooxygenase (PAM, EC 1.14.17.3)' was expressed in cultured insect cells by using the baculovirus expression vector system. The enzyme, recovered in the culture medium, was purified to homogeneity. Its apparent molecular mass (43 kd), estimated by both SDS-PAGE and molecular sieving, was higher than the value (39 kd) for the 'PAM' (AE-I) purified from frog skin. N-terminal sequence analysis indicated that cleavage of signal sequence had occurred but the propeptide still remained at the N terminus. The glycine-extended model peptide X-Gly (mean = Ala-Ile-Gly-Val-Gly-Ala-Pro) was used as substrate for the purified enzyme. The reaction product formed at pH 5.4 was isolated and characterized by amino acid sequence analysis, FAB-MASS and 1H-NMR. It was shown that the purified enzyme had converted the model peptide to the C-terminal alpha-hydroxyglycine-extended peptide [X-Gly(OH)] instead of the amidated product (X-NH2), indicating that the enzyme widely known as 'PAM' should be called 'peptidylglycine alpha-hydroxylating monooxygenase'. A novel enzyme, present in the insect cell culture medium and separable from the expressed monooxygenase, could convert the alpha-hydroxyglycine-extended peptide to the amidated product at physiological pH values. It is concluded that the alpha-amidation of glycine-extended peptides is a two-step process catalyzed by the monooxygenase and the novel enzyme.  相似文献   

13.
A G Katopodis  S W May 《Biochemistry》1990,29(19):4541-4548
Peptidylglycine alpha-amidating monooxygenase (PAM, EC 1.14.17.3) catalyzes the formation of alpha-amidated peptides from their glycine-extended precursors, thus playing a key role in the processing of peptide neurohormones. We now report that PAM readily catalyzes three alternate monooxygenase reactions--sulfoxidation, amine N-dealkylation, and O-dealkylation. Thus, (4-nitrobenzyl)thioacetic acid is converted to the analogous sulfoxide, N-(4-nitrobenzyl)glycine is converted to 4-nitrobenzylamine and glyoxylate, and [(4-nitrobenzyl)oxy]acetic acid is converted to 4-nitrobenzyl alcohol and glyoxylate. All these new activities display the characteristics expected for the normal PAM-catalyzed reductive oxygenation pathway and produce an equimolar amount of glyoxylate together with the heteroatom-containing dealkylation products. The ester [(4-methoxybenzoyl)oxy]acetic acid is not a PAM substrate, but is instead a good competitive inhibitor (KI = 0.48 mM). In addition, we report that the olefinic substrate analogues trans-benzoylacrylic acid and 4-phenyl-3-butenoic acid are potent time-dependent inactivators of PAM, with inactivation exhibiting the characteristics expected for mechanism-based inhibition. Monoethyl fumarate is also a time-dependent inactivator of PAM. Finally, we introduce several small non-peptide substrates for PAM by demonstrating that PAM catalyzes the transformation of hippuric acid and several ring-substituted derivatives to the corresponding benzamides and glyoxylic acid, with the most facile substrate of this class being 4-nitrohippuric acid. These compounds are the smallest amide substrates yet reported for PAM, and it is thus apparent that only the minimal structure of an acylglycine is required for PAM-catalyzed oxygenative amidation.  相似文献   

14.
Evans JP  Blackburn NJ  Klinman JP 《Biochemistry》2006,45(51):15419-15429
An essential histidine ligand to the electron transfer copper (CuH) of peptidylglycine alpha-hydroxylating monooxygenase (PHMcc) was mutated to an alanine and found to retain copper binding and hydroxylase activity [Jaron, S., et al. (2002) Biochemistry 41, 13274-13282]. An extensive kinetic and deuterium isotope effect study finds this mutant to maintain full coupling of O2 consumed to product formed despite a 3 order-of-magnitude decrease in kcat and a 300-fold decrease in kcat/Km(O2). Unexpectedly, electron transfer is not rate-limiting in H172A. Rather, the increased kinetic isotope effect (KIE) on kcat of 3.27 +/- 0.39 suggests that C-H bond cleavage has become more rate-limiting, implicating a role for His172 that goes beyond that of a simple ligand to CuH. The mechanistic implications are discussed.  相似文献   

15.
16.
We report the purification and characterization of human bifunctional peptidylglycine alpha-amidating monooxygenase (the bifunctional PAM) expressed in Chinese hamster ovary cells. PAM is in charge of the formation of the C-terminal amides of biologically active peptides. The bifunctional PAM possesses two catalytic domains in a single polypeptide, peptidylglycine alpha-hydroxylating monooxygenase (PHM, EC 1.14.17.3) and peptidylamidoglycolate lyase (PAL, EC 4.3.2.5). By introducing a stop codon at 835 Glu, we were able to eliminate the membrane-spanning domain in the C-terminal region and succeeded in purifying a soluble form of bifunctional PAM that was secreted into the medium. Through a three-step purification procedure, we obtained 0.3mg of the purified PAM, which showed a single band at 91 kDa on SDS-PAGE, from 1L of monolayer culture medium. Metals contained in the purified PAM were analyzed and chemical modifications were performed to gain insight into the mechanism of the PAL reaction. Inductively coupled plasma detected 0.62 mol of Zn(2+) and 1.25 mol of Cu(2+) per mol of bifunctional PAM. Further, the addition of 1mM EDTA reduced the PAL activity by about 50%, but the decreased activity was recovered by the addition of an excess amount of Zn(2+). In a series of chemical modifications, phenylglyoxal almost completely eliminated the PAL activity and diethyl pyrocarbonate suppressed activity by more than 70%. These findings implied that Arg and His residues might play crucial roles during catalysis.  相似文献   

17.
Dusa A  Kaylor J  Edridge S  Bodner N  Hong DP  Fink AL 《Biochemistry》2006,45(8):2752-2760
The aggregation of the presynaptic protein alpha-synuclein is associated with Parkinson's disease (PD). The details of the mechanism of aggregation, as well as the cytotoxic species, are currently not well understood. alpha-Synuclein has four tyrosine and no tryptophan residues. We introduced a tyrosine to tryptophan mutation at position 39 to create an intrinsic fluorescence probe and allow additional characterization of the aggregation process. Y39W alpha-synuclein had similar fibrillation kinetics (2-fold slower), pH-induced conformational changes, and fibril morphology to wild-type alpha-synuclein. In addition to intrinsic Trp fluorescence, acrylamide quenching, fluorescence anisotropy, ANS binding, dynamic light scattering, and FTIR were employed to monitor the kinetics of aggregation. These biophysical probes revealed the significant population of two classes of oligomeric intermediates, one formed during the lag period of fibrillation and the other present at the completion of fibrillation. As expected for a natively unfolded protein, Trp 39 was highly solvent-exposed in the monomer and is solvent-exposed in the two oligomeric intermediates; however, it is partially, but not fully, buried in the fibrils. These observations demonstrate the utility of Trp fluorescence labeled alpha-synuclein and demonstrate the existence of an oligomeric intermediate that exists as a transient reservoir of alpha-synuclein for fibrillation.  相似文献   

18.
Ubiquitin (Ub) and the ubiquitin-like proteins (UBLs) mediate an array of cellular functions. These proteins contain a C-terminal glycine residue that is key to their function. Oxidative conversion of C-terminal glycine-extended prohormones to the corresponding alpha-amidated peptide is one step in the biosynthesis of bioactive peptide hormones. The enzyme catalyzing this reaction is peptidylglycine alpha-amidating monooxygenase (PAM). We report herein that Ub is a PAM substrate with a (V/K)(amidation) that is similar to other known peptide substrates. This work is significant because PAM and the UBLs co-localize to the hypothalamus and the adrenal medulla and are both over-expressed in glioblastomas.  相似文献   

19.
Jaron S  Mains RE  Eipper BA  Blackburn NJ 《Biochemistry》2002,41(44):13274-13282
The spectroscopic characterization of the H172A mutant of peptidylglycine alpha-hydroxylating monooxygenase (PHM) was undertaken to determine the importance of this Cu(H) ligand in the catalytic mechanism of PHM. Mutation of this histidine reduced the activity of the enzyme over 300-fold with little effect on the structure of the oxidized form. However, the reduced enzyme showed a decrease in the average Cu-N(His) distances from 1.96 A in wild-type PHM to 1.89 A in H172A associated with a change in the structure of Cu(H) from distorted T-shaped planar in the wild type to 2-coordinate in the mutant. Binding of CO was retained at the Cu(M) site (similar to wild type), and peptide substrate binding continued to activate a second site for CO binding. Confirmation of this substrate-induced CO binding site at Cu(H) was obtained through the observation that loss of the H172 Cu(H) ligand caused a 3 cm(-)(1) blue shift in the nu(CO) for this copper carbonyl. Possible mechanistic roles for the H172 ligand are discussed.  相似文献   

20.
Extracts of bovine neurointermediate pituitary secretory granules and frozen bovine neurointermediate pituitary contain multiple forms of peptidylglycine alpha-amidating monooxygenase (PAM) activity differing in apparent molecular weight and in charge. Metal chelate affinity chromatography, substrate affinity chromatography, and gel filtration resulted in the purification of two forms of amidation activity from frozen bovine neurointermediate pituitary: PAM-A, apparent molecular weight 54,000, was purified 7,000-fold and PAM-B, apparent molecular weight 38,000, was purified 21,000-fold. Enzyme activity of similar molecular weights was observed in the starting material. Purified PAM-A and PAM-B correspond to two of the three charge forms present in crude extracts, and both exhibited optimal activity at alkaline pH. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of PAM-B revealed the presence of two bands with apparent molecular weights of 42,000 and 37,000; autoradiography of 125I-labeled PAM-B revealed only the same two bands, and 125I-labeled PAM-B co-eluted with enzyme activity during gel filtration. PAM-A was still heterogeneous based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The properties of purified PAM-A and PAM-B were very similar to those of amidation activity in crude extracts: activity was reduced upon removal of molecular oxygen; activity was stimulated by the addition of CuSO4 and eliminated by the addition of diethyldithiocarbamate; activity was stimulated by the addition of ascorbate, with optimal levels of ascorbate increasing as the concentration of peptide substrate was increased. In the presence of 1.25 mM ascorbate, PAM-B exhibited a Km of 7.0 microM for D-Tyr-Val-Gly and a Vmax of 84 nmol/micrograms/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号