首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to investigate changes in energy metabolism, neurotransmitters, and membrane disorder accompanying incomplete cerebral ischemia, a bilateral common carotid artery occlusion model of spontaneously hypertensive rats was utilized. We measured concentrations of ATP, phosphocreatine (PCr), lactate (Lac), glucose (Glu), acetylcholine (ACh), choline (Ch), and -aminobutyric acid (GABA) in both the cerebral cortex and the subcortical regions after 1 h ischemia, 2 h ischemia, and 2 h reflow following 2 h ischemia, and then examined changes in concentrations of these substances during and after incomplete cerebral ischemia. Also examined were interrelations of changes in these substance levels during ischemia. In the cerebral cortex, levels of ATP, PCr, Glu, and ACh decreased, and levels of Lac, Ch, and GABA increased during ischemia. After recirculation, levels of ATP, PCr, Ch, and GABA tended to return to the normal range. On the other hand, the Lac level remained in the ischemic range and the Glu level rose and greatly exceeded the normal range. With regard to ACh, most animals showed normal levels but some exceeded the normal range. Changes in the subcortical regions were qualitatively the same as those in the cerebral cortex during and after ischemia (except with Glu), but only smaller in degrees. Glu levels remained unchanged during ischemia. Correlation of the levels of these substances in the cerebral cortex was examined using normal and ischemic values. A high correlation was generally observed between ATP and other substance levels. The relations between ATP and either PCr or Glu levels were linear. The relation between ATP and ACh levels was logarithmic. The relations between ATP and either Lac, Ch, or GABA levels were exponential. Namely, ACh, Lac, Ch, and GABA levels stayed constant until ATP fell to some fixed low level, suggesting the existence of a threshold. High correlations were also observed among Lac, Ch, and GABA levels.  相似文献   

2.
The relationship of neurotransmitters and neuroeffectors to the energy state of the brain was examined in the gerbil model of ischemia after 5 and 15 min of bilateral common carotid artery occlusion only or with 1 hr of reperfusion. The gerbil brains were fixed by microwave irradiation and a total of 15 metabolites were measured from a single piece of tissue from either the hippocampus or the striatum. The rapid alterations in energy-related compounds and cyclic nucleotides appeared to be directly related both to the loss of oxygen and glucose during ischemia and the resupply of these nutrients during reflow. Significant reduction in the level of monoamines occurred prinicipally during reflow, at a time when the energy-related metabolites were restored. It is proposed that the changes in monoamines were triggered by other ischemic-induced events unrelated to energy depletion.Presented in part at the Nineteenth Annual Meeting of the American Society for Neurochemistry, 1988  相似文献   

3.
Glutamate is involved in cerebral ischemic injury, but its role has not been completely clarified and studies are required to understand how to minimize its detrimental effects, contemporarily boosting the positive ones. In fact, glutamate is not only a neurotransmitter, but primarily a key metabolite for brain bioenergetics. Thus, we investigated the relationships between glutamate and brain energy metabolism in an in vivo model of complete cerebral ischemia of 15 min and during post‐ischemic recovery after 1, 24, 48, 72, and 96 h in 1‐year‐old adult and 2‐year‐old aged rats. The maximum rates (V max) of glutamate dehydrogenase (GlDH ), glutamate‐oxaloacetate transaminase, and glutamate‐pyruvate transaminase were assayed in somatic mitochondria (FM ) and in intra‐synaptic ‘Light’ mitochondria and intra‐synaptic ‘Heavy’ mitochondria ones purified from cerebral cortex, distinguishing post‐ and pre‐synaptic compartments. During ischemia, none of the enzymes were modified in adult animals. In aged ones, glutamate‐oxaloacetate transaminase was increased in FM and GlDH in intra‐synaptic ‘Heavy’ mitochondria, stimulating glutamate catabolism. During post‐ischemic recovery, FM did not show modifications at both ages while, in intra‐synaptic mitochondria of adult animals, glutamate catabolism was increased after 1 h of recirculation and decreased after 48 and 72 h, whereas it remained decreased up to 96 h in aged rats. These results, with those previously published about Krebs’ cycle and Electron Transport Chain (Villa et al ., [2013] Neurochem. Int . 63, 765–781), demonstrate that: (i) V max of energy‐linked enzymes are different in the various cerebral mitochondria, which (ii) respond differently to ischemia and post‐ischemic recovery, also (iii) with respect to aging.

  相似文献   

4.
Regional extracellular release of dopamine (DA) and its metabolites, 3,4-dihydroxy-phenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT) was measured in gerbils (with or without pargyline pretreatment) subjected to bilateral carotid artery occlusion (15 min) and various periods of recirculation (up to 6 hr), utilizing intracerebral microdialysis and high-performance liquid chromatography (HPLC) with electrochemical detection. Mitochondrial monoamine oxidase (MAO) and superoxide dismutase (SOD) activities andin vitro stimulated lipid peroxidation (TBARM) were determined in separate experimental groups of animals. The ischemically induced DA release, decrease of MAO-derived DA metabolites DOPAC and HVA, and accumulation of 3-MT were potentiated and prolonged by pargyline pretreatment. Mitochondrial MAO and SOD activities were significantly reduced during ischemia alone and up to 1 hr of reperfusion, whereas TBARM was enhanced during reflow only. The data suggest that reduced activity of mitochondrial antioxidative enzyme(s) but not DA metabolism by MAO may contribute to free radical-mediated injury of (mitochondrial) membranes.  相似文献   

5.
Endometrial carcinoma differential 3 (EDI3) was the first member of the glycerophosphodiesterase (GDE) protein family shown to be associated with cancer. Our initial work demonstrated that endometrial and ovarian cancer patients with primary tumors overexpressing EDI3 had a higher risk of developing metastasis and decreased survival. Further analysis indicated that EDI3 cleaves glycerophosphocholine to choline and glycerol-3-phosphate, increases the levels of active PKC, and enhances the migratory activity of tumor cells. Despite these initial findings, EDI3 remained mainly uncharacterized. Therefore, to obtain an overview of processes in which EDI3 may be involved, gene array analysis was performed using MCF-7 breast cancer cells after EDI3 knockdown compared with a non-targeting control siRNA. Several biological motifs were altered, including an enrichment of genes involved in integrin-mediated signaling. More specifically, silencing of EDI3 in MCF-7 and OVCAR-3 cells was associated with reduced expression of the key receptor subunit integrin β1, leading to decreased cell attachment and spreading accompanied by delayed formation of cell protrusions. To confirm these results, we stably overexpressed EDI3 in MCF-7 cells which led to elevated integrin β1 expression associated with enhanced cell attachment and spreading - two processes critical for metastasis. In conclusion, our data provide further insight into the role of EDI3 during cancer progression.  相似文献   

6.
Endometrial carcinoma differential 3 (EDI3) was the first member of the glycerophosphodiesterase (GDE) protein family shown to be associated with cancer. Our initial work demonstrated that endometrial and ovarian cancer patients with primary tumors overexpressing EDI3 had a higher risk of developing metastasis and decreased survival. Further analysis indicated that EDI3 cleaves glycerophosphocholine to choline and glycerol-3-phosphate, increases the levels of active PKC, and enhances the migratory activity of tumor cells. Despite these initial findings, EDI3 remained mainly uncharacterized. Therefore, to obtain an overview of processes in which EDI3 may be involved, gene array analysis was performed using MCF-7 breast cancer cells after EDI3 knockdown compared with a non-targeting control siRNA. Several biological motifs were altered, including an enrichment of genes involved in integrin-mediated signaling. More specifically, silencing of EDI3 in MCF-7 and OVCAR-3 cells was associated with reduced expression of the key receptor subunit integrin β1, leading to decreased cell attachment and spreading accompanied by delayed formation of cell protrusions. To confirm these results, we stably overexpressed EDI3 in MCF-7 cells which led to elevated integrin β1 expression associated with enhanced cell attachment and spreading - two processes critical for metastasis. In conclusion, our data provide further insight into the role of EDI3 during cancer progression.  相似文献   

7.
Effects of iloprost, which is a stable prostacyclin analogue, on the ischemic myocardium were examined in the open-chest dog heart, in terms of biochemical parameters. Ischemia was initiated by ligating the left anterior descending coronary artery. When the coronary artery was ligated for 3 min, the levels or glycogen, fructose-1,6-diphosphate (FDP), adenosine triphosphate and creatinephosphate decreased, and the levels of glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), lactate, adenosine diphosphate and adenosine monophosphate increased. During ischemia, therefore, energy charge potential was significantly decreased from 0.89±0.01 to 0.82±0.01, and ([G6P]+[F6P])/[FDP] and [lactate]/[pyruvate] ratios were significantly increased from 1.75±0.30 to 29.05±5.70 and 13±3 to 393±112, respectively. Iloprost (0.1, 0.3, or 1 g·kg–1) was injected intravenously 5 min before the onset of ischemia. Iloprost (0.1, 0.3, and 1 g·kg–1) reduced the ischemia-induced decrease in energy charge potential to 94, 74, and 86%, respectively, the increase in ([G6P]+[F6P]/[FDP] to 38, 29, 32%, respectively, and the increase in [lactate]/[pyruvate] to 67, 45, 65%, respectively. These results suggest that iloprost lessens the myocardial metabolic derangements produced by ischemia, and the most potent effect was obtained at the dose of 0.3 g·kg–1.  相似文献   

8.
The concentrations of dopamine (DA), 5-hydroxytryptamine (5-HT) and noradrenaline (NA) in the rat vas deferens divided in eight or four sections were determined by high performance liquid chromatography with electrochemical detection. Dopamine and NA had the same regional distribution; their concentrations were maximal near the prostatic end and decreased towards the epididymis. The concentration of 5-HT also decreased from the prostatic to the epididimal end, but 5-HT did not follow the same regional distribution as DA and NA. Reserpine (0.02 or 0.2 mg/kg, i.p., 24 hr) and 6-hydroxydopamine (2×80 mg/kg, i.v., 6 days) decreased the contents of DA and NA; the concentrations of both amines were modified to a similar extent. Reserpine also diminished the content of 5-HT. Pargyline (200 mg/kg, i.p., 2 hr) increased the concentration of 5-HT whilep-chlorophenylalanine (300 mg/kg, oral, 3 days) decreased the contents of the amine in some sections of the vas deferens. This study suggests that DA and NA co-exist in the same sympathetic neurons. Some of the 5-HT could be stored in mast cells as previously proposed, but the finding that tissue content of 5-HT changes after inhibiting the deamination or synthesis of the amine suggests that other source(s) of 5-HT distinct from mast cells exist in the rat vas deferens.  相似文献   

9.
Concentrations of acetylcholine and the monoaminergic neurotransmitters dopamine, serotonin and their respective metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA), 5-hydroxyindolacetic acid (5-HIAA) and choline were simultaneously determined in the corpus striatum of rats after 15 min. complete cerebral ischemia (CCI) and in different intervals (1, 24, 48, 72, 96 hours) of postischemic cerebral reperfusion. Results were compared to respective sham-operated control animals. After 15 min. CCI acetylcholine concentration decreased to 15%, and dopamine concentration to 56% of the control values. The metabolite levels of DOPAC decreased to 40% and HVA to 64% of the control values. Acetylcholine, dopamine, serotonin and choline concentrations were not changed significantly after reperfusion. The metabolites HVA and 5-HIAA showed their maximum increases after 1 and 24 hours of reperfusion, additionally HVA was decreased both, after 72 and 96 hours of reperfusion. The data indicate that surprisingly little permanent damage could be caused by a 15 min. ischemia in the striatum. Tissue levels of the neurotransmitters appeared differentially altered but similarly regulated during ischemia and subsequent recirculation. Acetylcholine and dopamin levels decreased profoundly during ischemia. However, acetylcholine levels could be compensated rapidly during reperfusion, whereas the dopaminergic system showed a long-lasting change in its turnover rate. Although serotonin levels were unaffected by CCI, there was an increase of its presumed turnover rate during reperfusion.  相似文献   

10.
To provide insights into the effects of temporary focal ischemia on the function of neurons and astrocytes in vivo, we measured the incorporation of radiolabel from [U-14C]glucose into both glutamate and glutamine in brain subregions at 1 h of reperfusion following occlusion of the middle cerebral artery for 2 or 3 h. Under the experimental conditions used, 14C-glutamate is mainly produced in neurons whereas 14C-glutamine is generated in astrocytes from 14C-glutamate of both neuronal and astrocytic origin. Radiolabel incorporation into both amino acids was greatly decreased. The change in 14C-glutamate accumulation provides strong evidence for substantial reductions in neuronal glucose metabolism. The resulting decrease in delivery of 14C-glutamate from the neurons to astrocytes was probably also the major contributor to the change in 14C-glutamine content. These alterations probably result in part from a marked depression of glycolytic activity in the neurons, as suggested by previous studies assessing deoxyglucose utilization. Alterations in 14C-glucose metabolism were not restricted to tissue that would subsequently become infarcted. Thus, these changes did not inevitably lead to death of the affected cells. The ATP : ADP ratio and phosphocreatine content were essentially preserved during recirculation following 2 h of ischemia and showed at most only moderate losses in some subregions following 3 h of ischemia. This retention of energy reserves despite the decreases in 14C-glucose metabolism in neurons suggests that energy needs were substantially reduced in the post-ischemic brain. Marked increases in tissue lactate accumulation during recirculation, particularly following 3 h of ischemia, provided evidence that impaired pyruvate oxidation probably also contributed to the altered 14C-glucose metabolism. These findings indicate the presence of complex changes in energy metabolism that are likely to greatly influence the responses of neurons and astrocytes to temporary focal ischemia.  相似文献   

11.
目的: 探究盐诱导激酶2(SIK2)对大鼠心肌能量代谢的影响及其机制。方法: 通过结扎冠脉左前降支建立大鼠急性心梗模型,实验分为假手术组(Sham)、缺血再灌注组(I/R)、SIK2抑制组(I/R+Bosutinib)(10 mg/kg处理24 h)。心脏超声检测各组大鼠心脏结构和功能;HE染色观察大鼠心肌细胞病理学变化;ELISA检测各组大鼠心肌组织中腺苷三磷酸(ATP)、乳酸(LA)的含量;蛋白印迹法(WB)检测各组大鼠心肌组织中SIK2、p-DRP1(Ser616)、DRP1、p-AKT、AKT、p-mTOR、mTOR蛋白表达水平。结果: 与Sham组相比,I/R组心肌细胞病理损伤加重且SIK2蛋白表达增加(P<0.05);与I/R组相比,I/R+Bosutinib组SIK2表达降低且心肌病理损伤减轻。与Sham组相比,I/R组LVEF、FS降低(P<0.05);与I/R组相比,I/R+Bosutinib组LVEF、FS增高(P< 0.05),各组IVS、LVPW无明显差异(P>0.05)。与Sham组相比,I/R组ATP含量减少,LA含量增加(P<0.05),与I/R组相比,I/R+Bosutinib组ATP含量增加,LA含量减少(P<0.05)。与Sham组相比,I/R组p-DRP1(Ser616)表达增多,p-AKT、p-mTOR蛋白表达减少(P<0.05);与I/R组相比,I/R+Bosutinib组p-DRP1(Ser616)蛋白表达减少,p-AKT、p-mTOR蛋白表达增多(P<0.05);各组mTOR、AKT、DRP1蛋白无明显差异(P>0.05)。结论: SIK2可能通过AKT/mTOR信号通路及促进线粒体裂变抑制能量代谢,抑制SIK2可提高心肌能量代谢水平进而减轻心肌缺血/再灌注损伤。  相似文献   

12.
The activity of some small GTPases is regulated by covalent transamidation of serotonin (5-hydropxytryptamien) to glutamine residues of the enzymes. This process is mediated by transglutaminase (TGase) and is termed “serotonylation”. In addition, serotonylation of neural proteins and proteins of the extracellular matrix such as fibronectin has been demonstrated. Here we show that the catecholamines dopamine (DA) and noradrenaline (NA) inhibit serotonylation of fibronectin and that DA and NA themselves can be selectively transamidated into fibronectin by TGase. All three biogenic monoamines also block TGase-mediated transamidation of another monoamine, monodansylacadaverine, into fibronectin, suggesting a general mechanism of TGase-mediated “monoaminylation”.  相似文献   

13.
Eleven regions of mouse brain and twelve layers of monkey retina were assayed for choline acetyl transferase (ChAT), acetylcholine esterase (AChE), and 4 enzymes that synthesize acetyl CoA. The purpose was to seek evidence concerning the source of acetyl CoA for acetylcholine generation. In brain ATP citrate lyase was strongly correlated with ChAT as well as AChE (r=0.914 in both cases). Weak, but statistically significant correlation, was observed between ChAT and both cytoplasmic and mitochondrial thiolase, whereas there was a significant negative correlation between ChAT and acetyl thiokinase. In retina ChAT was essentially limited to the inner plexiform and ganglion cell layers, whereas substantial AChE activity extended as well into inner nuclear, outer plexiform and fiber layers, but no further. ATP citrate lyase activity was also highest in the inner four retinal layers, but was not strongly correlated with either ChAT or AChE (r=0.724 and 0.761, respectively). Correlation between ChAT and acetyl thiokinase was at least as strong (r=0.757), and in the six inner layers of retina, the correlation between ChAT and acetylthiokinase was very strong (r=0.932).Special issue dedicated to Dr. Lawrence Austin  相似文献   

14.
迷走神经和乙酰胆碱对缺血心肌保护作用的研究新进展   总被引:1,自引:0,他引:1  
Zang WJ  Lu J  Li DL  Jia B  Xu XL  Sun L 《生理科学进展》2006,37(4):292-296
缺血性心脏病是危害人类健康的主要疾病之一。新近研究发现,心肌缺血与迷走神经活性降低及交感神经活性升高密切相关。本文从缺血性心脏病时心脏迷走神经调控的改变、迷走神经及其递质乙酰胆碱对缺血心肌的保护作用和其在缺血预适应、缺血后适应中可能的信号转导途径等方面,对迷走神经及其递质保护缺血心肌的作用机制研究的新进展予以综述,将有助于深入理解缺血性心脏病的发病机制及防治措施,为该疾病的防治开辟新思路。  相似文献   

15.
目的:研究降痰宁神胶囊对血瘀性脑缺血大鼠脑组织物质代谢、能量代谢及抗氧化系统的影响。方法:采用连续注射地塞米松后结扎双侧颈总动脉来复制血瘀性脑缺血大鼠模型,通过观测大鼠脑组织代谢水平及抗氧化系统,考查降痰宁神胶囊抗脑缺血的作用及其作用机制。结果:3.56g/ks降痰宁神胶囊可减缓血瘀性脑缺血大鼠体重的下降,1.78-3.56g/妇降痰宁神胶囊能提高模型大鼠脑组织中葡萄糖、总氨基酸、ATP、Na+-K+.ATPnse的含量以及超氧化物歧化酶与过氧化氢酶的活性;降低脑组织中乳酸、丙二醛的含量以及脑组织含水量(P〈0.05,O.01)。结论:降痰宁神胶囊具有一定的抗脑缺血作用,调节脑组织物质与能量代谢、抗氧化是其抗脑缺血机制之  相似文献   

16.
Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (?2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild‐type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (?1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (?2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5‐hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks.  相似文献   

17.
甜菜夜蛾飞行肌中与能量代谢有关的酶活性   总被引:2,自引:0,他引:2  
通过生化方法测定了参与飞行能源物质代谢的5种酶活力的变化,即3-磷酸甘油醛脱氢酶(GAPDH)、3-磷酸甘油脱氢酶(GDH)、乳酸脱氢酶(L DH)、柠檬酸合酶(CS)和3-羟酰辅酶A脱氢酶(HOAD)。结果表明,1、3、5日龄处女蛾的GAPDH和CS酶活力显著高于7日龄蛾;但HOAD的活性恰恰与之相反,其酶活力随日龄的增加逐渐增强。GDH初羽化时活性较低,但到3日龄后增加到最大值,以后随日龄的增加活性逐渐下降,L DH的活性一直比较低,且不同日龄的酶活力差异不显著。交配状况和幼虫期饥饿处理对成虫的代谢酶活力没有显著影响。在第7代选育家系中,强飞家系的GAPDH酶活力显著高于短飞和不飞;而在第8代中强飞家系的上述5种酶的活性均高于短飞家系,而第10代中仅有CS的活性在强飞和短飞家系中存在显著差异,其他均差异不显著。这说明甜菜夜蛾在初始阶段主要利用糖类作为能源物质,而后期飞行又可通过脂类代谢提供能量,且不同日龄的处女蛾和选择家系的飞行能力与代谢酶活性呈现一定的正相关关系。  相似文献   

18.
Stroke is a leading cause of death and disability, but most of the therapeutic approaches failed in clinical trials. The energy metabolism alterations, due to marked ATP decline, are strongly related to stroke and, at present, their physiopathological roles are not fully understood. Thus, the aim of this study was to evaluate the effects of aging on ischemia-induced changes in energy mitochondrial transduction and the consequences on overall brain energy metabolism in an in vivo experimental model of complete cerebral ischemia of 15 min duration and during post-ischemic recirculation after 1, 24, 48, 72 and 96 h, in 1 year “adult” and 2 year-old “aged” rats.  相似文献   

19.
We tested the hypothesis that down-regulated hearts, as observed during low-flow ischemia, adapt better to low O2 supply than non-down-regulated, or hypoxic, hearts. To address the link between down-regulation and endogenous ischemic protection, we compared myocardial tolerance to ischemia and hypoxia of increasing duration. To that end, we exposed buffer-perfused rat hearts to either low-flow ischemia or hypoxia (same O2 shortage) for 20, 40 or 60 min (n = 8/group), followed by reperfusion or reoxygenation (20 min, full O2 supply). At the end of the O2 shortage, the rate·pressure product was less in ischemic than hypoxic hearts (p < 0.0001). The recovery of the rate·pressure product after reperfusion or reoxygenation was not different for t = 20 min, but was better in ischemic than hypoxic hearts for t = 40 and 60 min (p < 0.02 and p < 0.0002, respectively). The end-diastolic pressure remained unchanged during low-flow ischemia (0.024 ± 0.013 mmHg·min–1), but increased significantly during hypoxia (0.334 ± 0.079 mmHg·min–1). We conclude that, while the duration of hypoxia progressively impaired the rate·pressure product and the end-diastolic pressure, hearts were insensitive of the duration of low-flow ischemia, thereby providing evidence that myocardial down-regulation protects hearts from injury. Excessive ATP catabolism during ischemia in non-down-regulated hearts impaired myocardial recovery regardless of vascular, blood-related and neuro-hormonal factors. These observations support the view that protection is mediated by the maintenance of the ATP pool.  相似文献   

20.
The effects of raised brain lactate levels on neuronal survival following hypoxia or ischemia is still a source of controversy among basic and clinical scientists. We have sought to address this controversy by studying the effects of glucose and lactate on neuronal survival in acute and cultured hippocampal slices. Following a 1-h hypoxic episode, neuronal survival in cultured hippocampal slices was significantly higher if glucose was present in the medium compared with lactate. However, when the energy substrate during the hypoxic period was glucose and then switched to lactate during the normoxic recovery period, the level of cell damage in the CA1 region of organotypic cultures was significantly improved from 64.3 +/- 2.1 to 74.6 +/- 2.1% compared with cultures receiving glucose during and after hypoxia. Extracellular field potentials recorded from the CA1 region of acute slices were abolished during oxygen deprivation for 20 min, but recovered almost fully to baseline levels with either glucose (82.6 +/- 10.0%) or lactate present in the reperfusion medium (108.1 +/- 8.3%). These results suggest that lactate alone cannot support neuronal survival during oxygen deprivation, but a combination of glucose followed by lactate provides for better neuroprotection than either substrate alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号