首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The eye of the honey bee drone is composed of approximately 8,000 photoreceptive units or ommatidia, each topped by a crystalline cone and a corneal facet. An ommatidium contains 9 visual or retinula cells whose processes or axons pierce a basement membrane and enter the optic lobe underlying the sensory retina. The visual cells of the ommatidium are of unequal size: six are large and three, small. In the center of the ommatidium, the visual cells bear a brush of microvilli called rhabdomere. The rhabdome is a closed-type one and formed mainly by the rhabdomeres of the six large retinula cells. The rhabdomeric microvilli probably contain the photopigment (rhodopsin), whose modification by light lead to the receptor potential in the retinula cells. The cytoplasm of the retinula cells contains various organelles including pigment granules (ommochromes), and peculiar structures called the subrhabdomeric cisternae. The cisternae, probably composed of agranular endoplasmic reticulum undergo swelling during dark adaptation and appear in frequent connection with Golgi cisternae. Three types of pigment cells are associated with each ommatidium. The crystalline cone is entirely surrounded by two corneal pigment cells. The ommatidium, including its dioptric apparatus and corneal pigment cells, is surrounded by a sleeve of about 30 elongated cells called the outer pigment cells. These extend from the base of the corneal facet to the basement membrane. Near the basement membrane the center of the ommatidium is occupied by a basal pigment cell. Open extracellular channels are present between pigment cells as well as between retinula cells. Tight junctions within the ommatidium are restricted to the contact points between the rhabdomeric microvilli. These results are discussed in view of their functional implications in the drone vision, as well as in view of the data of comparative morphology.This work was supported by a grant from the Fonds National Suisse de la Recherche Scientifique.  相似文献   

2.
The lateral compound eye of Scutigera coleoptrata was examined by electron microscopy. Each ommatidium consists of a dioptric apparatus, formed by a cornea and a multipartite eucone crystalline cone, a bilayered retinula and a surrounding sheath of primary pigment and interommatidial pigment cells. With reference to the median eye region, each cone is made up of eight cone segments belonging to four cone cells. The nuclei of the cone cells are located proximally outside the cone near the transition area between distal and proximal retinula cells. The connection between nuclear region and cone segment is via a narrow cytoplasmic strand, which splits into two distal cytoplasmic processes. Additionally, from the nuclear region of each cone cell a single cytoplasmic process runs in a proximal direction to the basement membrane. The bilayered rhabdom is usually made up of the rhabdomeres of 9–12 distal retinula cells and four proximal retinula cell. The pigment shield is composed of primary pigment cells (which most likely secrete the corneal lens) and interommatidial pigment cells. The primary pigment cells underlie the cornea and surround, more or less, the upper third of the crystalline cone. By giving rise to the cornea and by functioning as part of the pigment shield these pigment cells serve a double function. Interommatidial pigment cells extend from the cornea to the basement membrane and stabilise the ommatidium. In particular, the presence of cone cells, primary pigment cells as well as interommatidial pigment cells in the compound eye of S. coleoptrata is seen as an important morphological support for the Mandibulata concept. Furthermore, the phylogenetic significance of these cell types is discussed with respect to the Tetraconata.  相似文献   

3.
Among ants, Cataglyphis bicolor shows the best performance in optical orientation. Its eye is of the apposition type with a fused rhabdom. Morphological studies on the general struture of the eye as well as the effect of light have been carried out with transmission and scanning electron microscopy. An ommatidium is composed of a dioptric apparatus, consisting of a cornea, corneal process and a crystalline cone, the sensory retinula, which is made up of eight retinula cells in the distal half and of an additional ninth one in the proximal half. The ommatidia are separated from each other by two primary pigment cells, which surround the crystalline cone and an average of 12 secondary pigment cells, which reach from cornea to the basement membrane. The eye of Cataglyphis bicolor possesses a light intensity dependent adaptation mechanism, which causes a radial and distal movement of the pigment granules within the retinula cells and a dilatation of cisternae of the ER along the rhabdom. Until now, no overall order in arrangement of retinula cells or direction of microvilli has been found from ommatidium to ommatidium. Such an order, however, must exist, either on the retina or the lamina level, since we have proven the ant's capacity for polarized light analysis.  相似文献   

4.
During metamorphosis, the dioptric apparatus of the larval compound eye of Chaoborus crystallinus (Diptera : Nematocera) is radically reconstructed. The thin larval cornea of the ommatidia is replaced by strongly curved corneal lenses, and the eucone larval cone is replaced by an imaginal cone of the acone type. Curvature of the future lens is already apparent in very young pupae, in which the cornea consists only of a thin epicuticle with corneal nipples. Fibrillary cuticle is secreted by cone and primary pigment cells throughout pupal development. Lens formation is accompanied by movement of the nuclei of the accessory pigment cells. The larval cone disintegrates unexpectedly late in young, images. During late pupal development, 7 cone cell projections emerge. In contrast to the dioptric apparatus, the retinula cells and rhabdom remain almost unchanged during metamorphosis. The main refractive element of the larval ommatidium appears to be the cone, while that of the imaginal ommatidium is the corneal lens. In addition to the compound eyes, the pairs of stemmata are retained during the whole post-larval development. Pupal stemmata show no structural differences from the larval stemmata. The stemmata are still present in 2-day-old images (“retained stemmata”), but the primary stemma loses its dioptric apparatus and is proximally relocated to the basal region of the compound eye. The reconstructions in the visual system of Chaoborus, which occur during ontogeny, are probably connected with the change from aquatic living larvae to aerial adults, and appear to fulfill stage-specific needs of vision.  相似文献   

5.
The compound eye of Munida irrasa differs in several respects from the typical decapod eye. The proximal pigment is found only in retinula cells. The eccentric cell is extremely large and expanded to fill the interstices of the crystalline tract area; thus, a typical "clear-zone" is absent. Six retinula cells course distally to screen two sides of the crystalline cone. There are approximately 12,500 ommatidia in each compound eye. There are several similarities to the typical decapod eye. Each ommatidium is composed of a typical cornea, corneagenous cells, crystalline cone cells, crystalline cone, crystalline cone tract and eight retinula cells. Distal pigment cells are present and surround the crystalline cone. The distal processes of the retinula cells also contain pigment. The retinula cell processes penetrate the basement membrane as fascicles composed of processes from adjacent retinulae.  相似文献   

6.
Curis caloptera is a buprestid beetle, which is active in bright sunlight. Its eye, like that of many other diurnal arthropods, is of the apposition type, in which dioptric apparatus and receptor layer are not separated by a region devoid of pigment. Perhaps to prevent damage by U. V.-radiation, the cornea is relatively thick (approximately 90 micron) and crystalline cones are of the "eucone-type". In each ommatidium the cone cell extensions occupy regular positions between the 8 retinula cells and reach down to the basement membrane where they end in bulbous swellings and contain grains of screening pigment. Pigment grains, slightly smaller than those present in the primary pigment cells, are also found within the retinula cells. Although the rhabdom possesses a uniform diameter of approximately 2 micron over its entire length of almost 300 micron, the number of rhabdomeres contributing to the rhabdom varies and depends on the level at which the rhabdom is sectioned. At the distal end, only one retinula cell possesses a rhabdomere; the same holds true for the proximal end, where a different rhabdomere (with microvilli at right angles to those of the distal cell) dominates. One retinula cell, of darker appearance in electron micrographs, occupies a distal position in each ommatidium and remains preferentially oriented within a sector of 60 degrees irrespective of the ommatidial axis. The ommatidial axis itself was found to vary 235 degrees. We provide circumstantial evidence for the view that the cell in question could be a U. V.-receptor with a role to play in an unambiguous determination of the E-vector. Separate bundles, each containing 8 axons, pass through the basement membrane together with 1 or 2 tracheoles. A traceheal tapetum is not developed.  相似文献   

7.
Pelagic amphipods belonging to the genus Phronima have four compound eyes; two lateral eyes and two large transparent medial eyes which comprise the entire top of the head. The eyes are structurally similar but the crystalline cones of the medial eyes are more than twenty times as long as those of the lateral eyes, reaching 5 mm in a large animal. The dioptric system of each ommatidium consists of an unfaceted cornea, a layer of hypodermal cells, two rudimentary cone cells, two cells which surround and form the crystalline cone, and the cone itself. The cone and its surrounding cells penetrate the layer of accessory pigment cells which surrounds the retina. The fused rhabdom is formed by the five retinula cells but is separated from them by an extracellular palisade which is crossed by bridges. The retinula cell nuclei lie proximal to the basement membrane. Further proximally the bundle of retinula cell axons is crossed by a second basement membrane, which surrounds each axon with a collar. Medial and lateral eyes on each side of the head share a common lamina. The medial eyes of Phronima appear to be a solution to the problem of remaining inconspicuous to predators while still maintaining sensitivity and resolution.  相似文献   

8.
Summary The Limulus ommatidium consists of 4 to 20 retinula cells surrounding the dendrite of the eccentric cell. Adjoining membranes are differentiated into the microvillous rhabdome in the central area of the ommatidium. Three types of pigment cells envelop the sensory cells. The distal pigment cells cover the periphery of the distal half of the ommatidium; proximal pigment cells (beneath the base of the ommatidium) and intraommatidial pigment cells provide glial wrapping for the sensory cells, the partitions between them, and the peripheral loose framework. Processes of the overlying cone cells penetrate into the ommatidium and lie at the edges of the rhabdomal fins. Numerous neurosecretory axons terminate at all levels of the ommatidium on pigment cells, conveyed there either by enveloping pigment cells or by separate neuroglial cells. Tight junctions in the ommatidium are confined to the contacts between rhabdomal miorovilli. The periphery of the rhabdome is surrounded by continuous adhering junctions except at the tip and exit of the eccentric cell dendrite. The discussion centers on possible correlations between known neurophysiological characteristics of ommatidial cells and significant morphological aspects of the ommatidium, such as distribution of supporting cells, extracellular space, and junctional specializations.This study constitutes publication No. 329 from the Oregon Regional Primate Research Center, supported by Grants FR00163 and NB07717-01 from the National Institutes of Health and by a Bob Hope Fight-for-Sight Grant-in-Aid of the National Council to Combat Blindness, Inc.The author wishes to thank Mrs. Audrey Griffin for patient and excellent technical assistance, Mr. Joel Ito for the execution of the drawing, and Dr. C. J. Russell for constructive criticism.  相似文献   

9.
许曼飞  李孟园  姜岩  孟召娜  谭畅  王国昌  边磊 《昆虫学报》2022,65(10):1277-1286
【目的】明确灰茶尺蠖Ectropis grisescens成虫复眼的超微结构及其明暗适应中的变化,探究其调光机制。【方法】采用超景深显微镜测定了灰茶尺蠖成虫复眼的小眼数量、间角、直径和曲率半径等外部参数,并通过组织切片、光学显微镜和透射电子显微镜等技术观察了复眼的内部超微结构;通过光学显微镜观察了灰茶尺蠖成虫复眼在明暗环境中分别适应2 h后晶锥结构及色素颗粒的位置变化。【结果】灰茶尺蠖成虫复眼呈半球形,雌、雄虫单个复眼分别有2 502±105和3 123±78个小眼。小眼自远端至近端由角膜、晶锥、透明区构成的屈光层和由15个视网膜细胞构成的感光层组成。2个初级色素细胞包裹着晶锥,自角膜近端延伸至视网膜细胞核区的远端;每个小眼外围由6个次级色素细胞围绕,自角膜近端延伸至基膜;在透明区内14个视网膜细胞聚集成束(非感杆束),远端与晶锥束末端连接,在感光层内形成闭合型感杆束,延伸至第15个视网膜细胞(基部视网膜细胞)。在明暗适应时,灰茶尺蠖复眼的晶锥细胞间出现开闭,色素颗粒进行纵向位移,以适应外界的光强度的变化。【结论】灰茶尺蠖成虫复眼属于重叠像眼,感杆束为“14+1”模式;屏蔽色素颗粒的移...  相似文献   

10.
Ultrastructure of the eye of a euphausiid crustacean   总被引:1,自引:0,他引:1  
The compound eye of the Antarctic euphausiid Euphausia superba is a spherical clear zone eye. The dioptric system consists of a hexagonally-faceted cornea, two corneagenous cells, two crystalline cone cells which form the bipartite crystalline cone, and two accessory cone cells. The dioptric system of each ommatidium is separated from that of adjacent ommatidia by six distal pigment cells and a basement membrane. The proximal tip of the crystalline cone is cupped by the distal ends of the seven retinula cells whose nuclei are arranged in a staggered array slightly distal to the middle of the clear zone. In the distal half of the clear zone, each narrow retinula cell column is surrounded by large proximal extensions of the six distal pigment cells. The pigment cells narrow more proximally and terminate at the proximal basement membrane. A specialized axial channel complex extends from the crystalline cone through the clear zone, and is continuous with a conical refractive element which caps the distal end of the rhabdom. The rhabdom is fused, and made up of alternating highly birefringent layers of orthogonally-oriented microvilli. It is surrounded by a narrow extra-cellular space which is continuous with the distal refractive element and a second conical refractive element at the proximal end of the rhabdom.  相似文献   

11.
Summary The retinal morphology of the butterfly, Pieris rapae L., was investigated using light and electron microscopy with special emphasis on the morphology and distribution of its screening pigments. Pigment migration in pigment and retinula cells was analysed after light-dark adaptation and after different selective chromatic adaptations. The primary pigment cells with white to yellow-green pigments symmetrically surround the cone process and the distal half of the crystalline cone, whilst the six secondary pigment cells, around each ommatidium, contain dark brown pigment granules. The nine retinula cells in one ommatidium can be categorised into four types. Receptor cells 1–4, which have microvilli in the distal half of the ommatidium only, contain numerous dark brown pigment granules. On the basis of the pigment content and morphology of their pigment granules, two distal groups of cells, cells 1, 2 and cells 3, 4 can be distinguished. The four diagonally arranged cells (5–8), with rhabdomeric structures and pigments in the proximal half of the cells, contain small red pigment granules of irregular shape. The ninth cell, which has only a small number of microvilli, lacks pigment. Chromatic adaptation experiments in which the location of retinula cell pigment granules was used as a criterium reveal two UV-receptors (cells 1 and 2), two green receptors (cells 3 and 4) and four cells (5–8) containing the red screening pigment, with a yellow-green sensitivity.  相似文献   

12.
Summary The compound eye of Psychoda cinerea comprises two types of ommatidia, arranged so as to divide the retina into distinct dorsal and ventral regions. The P-type ommatidium, in the ventral part of the eye, differs fundamentally from the other dipteran ommatidia so far described, and is regarded as a primitive ommatidium. The acone dioptric apparatus is the same in both types, with a spherical lens and four Semper cells, the processes of which expand below the rhabdom to form a ring of pigment sacs. Only the distal region of the rhabdom is surrounded by a continuous ring of screening pigment, formed by 2 primary and 12–16 secondary pigment cells. The highly pigmented retinula cells penetrate the basement membrane proximally at about the level of their nuclei; in this region they are separated from the hemolymph by glial elements. The rhabdomeres R1–6 are fused to form a tube. The two types of ommatidia are defined by the arrangement of the retinula cells R7/8: in the T type the central rhabdomeres are one below the other, in the usual tandem position, whereas in the P type only R8 is central, with R7 in the peripheral ring. In the proximal region of the retina, retinula cells with parallel microvilli in neighboring ommatidia are joined in rows by lateral processes from the R8 cells. All the rhabdomeres are short and not twisted, which suggests that the retinula cells are highly sensitive to direction of polarization. The eye can adapt by a number of retinomotor processes. These findings, together with observations of behavior, imply that the psychodids have well-developed visual abilities.  相似文献   

13.
Summary The superposition eye of the cockchafer, Melolontha melolontha, exhibits the typical features of many nocturnal and crepuscular scarabaeid beetles: the dioptric apparatus of each ommatidium consists of a thick corneal lens with a strong inner convexity attached to a crystalline cone, that is surrounded by two primary and 9–11 secondary pigment cells. The clear zone contains the unpigmented extensions of the secondary pigment cells, which surround the cell bodies of seven retinula (receptor) cells per ommatidium and a retinular tract formed by them. The seven-lobed fused rhabdoms are composed by the rhabdomeres of the receptor cells 1–7. The rhabdoms are optically separated from each other by a tracheal sheath around the retinulae. The orientation of the microvilli diverges in a fan-like fashion within each rhabdomere. The proximally situated retinula cell 8 does not form a rhabdomere. This standard form of ommatidium stands in contrast to another type of ommatidium found in the dorsal rim area of the eye. The dorsal rim ommatidia are characterized by the following anatomical specializations: (1) The corneal lenses are not clear but contain light-scattering, bubble-like inclusions. (2) The rhabdom length is increased approximately by a factor of two. (3) The rhabdoms have unlobed shapes. (4) Within each rhabdomere the microvilli are parallel to each other. The microvilli of receptor 1 are oriented 90° to those of receptors 2–7. (5) The tracheal sheaths around the retinulae are missing. These findings indicate that the photoreceptors of the dorsal rim area are strongly polarization sensitive and have large visual fields. In the dorsal rim ommatidia of other insects, functionally similar anatomical specializations have been found. In these species, the dorsal rim area of the eye was demonstrated to be the eye region that is responsible for the detection of polarized light. We suggest that the dorsal rim area of the cockchafer eye subserves the same function and that the beetles use the polarization pattern of the sky for orientation during their migrations.  相似文献   

14.
大草蛉成虫复眼的外部形态及其显微结构   总被引:2,自引:0,他引:2  
张海强  朱楠  范凡  魏国树 《昆虫学报》2007,50(5):454-460
用扫描电镜和光学显微镜观察了大草蛉Chrysopa pallens Ramber成虫复眼的外部形态及明、暗适应和性别对其显微结构的影响。结果发现:(1)其复眼呈半球形,位于头部两侧,略成“八”字形排列,单个复眼约由3 600个小眼组成,最前和最后小眼之间的夹角约为180°,最上和最下小眼之间的夹角约200°;(2)小眼主要由角膜、晶锥和6~8个小网膜细胞、基膜组成,外围环绕有2个初级虹膜色素细胞和6个次级虹膜色素细胞,基膜处有色素颗粒分布;(3)暗适应时,晶锥开裂程度较大,远端5~7个网膜细胞核向远端移动,与晶锥近端相接或接近,次级虹膜色素颗粒亦向远端移动包围晶锥;明适应时,晶锥开裂程度小或闭合,远端网膜细胞核向近端移动,透明带显现,大部分次级虹膜色素颗粒亦向近端移动分布在小网膜细胞柱周围,包被透明带;(4)在相同的明、暗适应下,雌、雄成虫复眼的显微结构无明显差异。结果表明大草蛉复眼为透明带明显的重叠象眼,其小眼不但具有次级虹膜色素颗粒纵向移动的常规调光机制,还存在晶锥开闭、远端网膜细胞核移动和基膜色素颗粒纵向扩散的调光新机制。  相似文献   

15.
Abstract The stemmata of last–instar Nannochoristalarvae are compound eyes composed of 10 or more ommatidia. Each ommatidium has four Semper cells, four distal and four proximal retinula cells which form a cruciform and layered rhabdom. The ommatidia are separated by epidermal cells (possibly rudimentary pigment cells). Corneal lenses are lacking. At the posterior edge, aberrant stemma units may be present which lack a dioptric apparatus and have a star–shaped rhabdom composed of at least six retinula cells. The stemmata of Nannochoristaappear to be derived from stemmata of the Panorpa-type (Mecoptera-Panorpidae). Differences between the stemmata of Nannochoristaand Panorpacan be explained as adaptations to aquatic life (flat cornea) or as regression. A compound larval eye is ascribed to the ground plan of the Mecoptera sensu latoand is considered a genuine plesiomorphy. The identical basic number (seven) of stemmata in the Neuropteroid/Coleoptera assemblage, Amphiesmenoptera and some Mecoptera (Bittacidae, Boreidae) is attributed to parallel evolution.  相似文献   

16.
The simple eye of the human louse consists of two apparatuses: dioptric and light sensitive. The dioptric apparatus contains only a biconvex lens, which represents local thickening of the cuticle. The eye lacks the crystal cone (Semper cells) and special pigment cells. The light sensitive part of the eye contains about 130 photoreceptor cells. Each photoreceptor has rhabdomere which consists of numerous microvilli. The pigment granules are located only in the photoreceptor cells.  相似文献   

17.
Ultrastructurally, the compound eyes of the luminescent marine ostracodes Vargula graminkola and V. tsujii are similar. These ostracodes have two lateral compound eyes, with relatively few ommatidia (13 and 20 respectively). They exhibit apposition type compound eyes as seen in many other arthropods. Each ommatidium includes: a flat, ectodermal cuticular covering, corneagen cells, two long cone cells that give rise to a large conspicuous crystalline cone, retinular cells, pigment cells, a microvillar rhabdom and proximal axonal neurons. The axons merge to form an optic nerve that extends into the brain through a short, muscular stalk that is surrounded externally by a cuticle. The number of retinular cells is typically six per ommatidium in V. graminicola and eight per ommatidium in V. tsujii. Screening pigment cells surround each ommatidium forming a layer that is about 5–15 pigment granules thick. In addition to pigment cells, the cytoplasm of the retinular cells includes numerous screening pigment granules. In light/dark adaptation, there are no obvious morphological differences in the orientation of the rhabdom or in the organization of the screening pigments. Both Vargula species studied are nocturnally active and bioluminescent suggesting that these eyes are capable receptors of the bright conspecific luminescence.  相似文献   

18.
There are eight retinula cells in the ommatidium of the compound eye of the toadbug (Gelastocoris oculatus), two of which are central in position. Along the axial sides of the six peripheral retinula cells expand six cytoplasmic processes from the apical crystalline cone cells. These processes, which contain longitudinally-oriented microtubules, are associated with all eight retinula cells by means of desmosomal junctions. In addition to providing structural support, the possibility is set forth that the interconnecting cone processes might also serve to functionally integrate the retinula cells of an ommatidium. The eight retinula cells possess microvillus surfaces, which are especially prominent in the six peripheral cells, where they extend into the lumen of the ommatidium. There is evidence of pinocytotic activity at the bases of microvilli. Multivesicular bodies are present in the cytoplasm of retinula cells, and the means by which these bodies might be elaborated are discussed.  相似文献   

19.
Summary The ultrastructure of the specialized nauplius eye of three species of the copepod genusSapphirina was investigated. The gross morphology described earlier (Elofsson, 1966a) was confirmed. The ventral cup is covered by a red pigment and the lateral cups by a red and a black pigment. The ultrastructural configuration of the pigment granules was found to differ in the two kinds of pigment cells. The black pigment cell, moreover, contains a large number of transversely banded fibrils and is able to produce reflecting crystals. The pigment granules of the black pigment cell show a variation in electron density. An intimate connexion exists between the black pigment cell and large retinula cells in the lateral cups, indicating an exchange of material. The tapetal cells present in all three cups form crystal platelets contained in two sets of membranes. It is suggested that the ventral cup and part of the lateral cups function as thePecten-eye (Land, 1965). The rhabdomeres of the retinula cells are composed of microvilli measuring 400 Å. The orientation of these seems to exclude polarotactic behaviour. The ventral cup and the four small cells of the lateral cups contain some retinula cells with microvilli arranged parallel to the incoming light. The retinula cells further develop an intricate system of membrane-invaginations penetrating deep into the cell and associated with numerous mitochondria. Retinula cells of the ventral cup and part of the lateral cups contain clear portions filled with granular material only. Retinula and other cells contain attenuated mitochondria with parallel tubuli. The proximal lens in front of each lateral cup consists of one cell. A development from the conjunctival cells is suggested. The results are evaluated in terms of function and evolution.This work has been supported by a grant from the Swedish Natural Science Research Council (2760-2).  相似文献   

20.
A number of differences exists between the compound eyes of larval and adult rock lobsters, Panulirus longipes. The larval eye more closely resembles the apposition type of compound eye, in which retinula cells and rhabdom lie immediately below the cone cells. The adult eye, on the other hand, is a typical clear-zone photoreceptor in which cones and retinula cell layers are separated by a wide transparent region. The rhabdom of the larval eye, if cut longitudinally, exhibits a "banded" structure over its entire length; in the adult the banded part is confined to the distal end, and the rhabdom is tiered. Both eyes have in common an eighth, distally-located retinula cell, which possesses orthogonally-oriented microvilli, and a peculiar lens-shaped "crystal", which appears to focus light onto the narrow column of the distal rhabdom. Migration of screening pigment on dark-light adaptation is accompanied by changes in sensitivity and resolution of the eye. Retinula cells belonging to one ommatidium do not arrange into one single bundle of axons, but interweave with axons of four neighbouring facets in an extraordinarily regular fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号