共查询到20条相似文献,搜索用时 15 毫秒
1.
Background
The exploration of the structural topology and the organizing principles of genome-based large-scale metabolic networks is essential for studying possible relations between structure and functionality of metabolic networks. Topological analysis of graph models has often been applied to study the structural characteristics of complex metabolic networks. 相似文献2.
3.
Background
Metabolic correlation networks are derived from the covariance of metabolites in replicates of metabolomics experiments. They constitute an interesting intermediate between topology (i.e. the system's architecture defined by the set of reactions between metabolites) and dynamics (i.e. the metabolic concentrations observed as fluctuations around steady-state values in the metabolic network). 相似文献4.
Elementary flux mode analysis is a promising approach for a pathway-oriented perspective of metabolic networks. However, in larger networks it is hampered by the combinatorial explosion of possible routes. In this work we give some estimations on the combinatorial complexity including theoretical upper bounds for the number of elementary flux modes in a network of a given size. In a case study, we computed the elementary modes in the central metabolism of Escherichia coli while utilizing four different substrates. Interestingly, although the number of modes occurring in this complex network can exceed half a million, it is still far below the upper bound. Hence, to a certain extent, pathway analysis of central catabolism is feasible to assess network properties such as flexibility and functionality. 相似文献
5.
Steady-state metabolic flux analysis (MFA) is an experimental approach that allows the measurement of multiple fluxes in the core network of primary carbon metabolism. It is based on isotopic labelling experiments, and although well established in the analysis of micro-organisms, and some mammalian systems, the extension of the method to plant cells has been challenging because of the extensive subcellular compartmentation of the metabolic network. Despite this difficulty there has been substantial progress in developing robust protocols for the analysis of heterotrophic plant metabolism by steady-state MFA, and flux maps have now been published that reflect the metabolic phenotypes of excised root tips, developing embryos and cotyledons, hairy root cultures, and cell suspensions under a variety of physiological conditions. There has been a steady improvement in the quality, extent and statistical reliability of these analyses, and new information is emerging on the performance of the plant metabolic network and the contributions of specific pathways. 相似文献
6.
A key point in the analysis of dynamical models of biological systems is to handle systems of relatively high dimensions.
In the present paper we propose a method to hierarchically organize a certain type of piecewise affine (PWA) differential
systems. This specific class of systems has been extensively studied for the past few years, as it provides a good framework
to model gene regulatory networks. The method, shown on several examples, allows a qualitative analysis of the asymptotic
behavior of a PWA system, decomposing it into several smaller subsystems. This technique, based on the well-known strongly
connected components decomposition, is not new. However, its adaptation to the non-smooth PWA differential equations turns
out to be quite relevant because of the strong discrete structure underlying these equations. Its biological relevance is
shown on a 7-dimensional PWA system modeling the gene network responsible for the carbon starvation response in Escherichia coli.
相似文献
Laurent Tournier (Corresponding author)Email: |
Jean-Luc GouzéEmail: |
7.
Predicting behavior of large-scale biochemical networks represents one of the greatest challenges of bioinformatics and computational biology. Computational tools for predicting fluxes in biochemical networks are applied in the fields of integrated and systems biology, bioinformatics, and genomics, and to aid in drug discovery and identification of potential drug targets. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are promising tools for the analysis of large complex networks. Here we introduce energy balance analysis (EBA)--the theory and methodology for enforcing the laws of thermodynamics in such simulations--making the results more physically realistic and revealing greater insight into the regulatory and control mechanisms operating in complex large-scale systems. We show that EBA eliminates thermodynamically infeasible results associated with FBA. 相似文献
8.
The structure of hierarchical networks in biological and physical systems has long been characterized using the Horton-Strahler ordering scheme. The scheme assigns an integer order to each edge in the network based on the topology of branching such that the order increases from distal parts of the network (e.g., mountain streams or capillaries) to the "root" of the network (e.g., the river outlet or the aorta). However, Horton-Strahler ordering cannot be applied to networks with loops because they they create a contradiction in the edge ordering in terms of which edge precedes another in the hierarchy. Here, we present a generalization of the Horton-Strahler order to weighted planar reticular networks, where weights are assumed to correlate with the importance of network edges, e.g., weights estimated from edge widths may correlate to flow capacity. Our method assigns hierarchical levels not only to edges of the network, but also to its loops, and classifies the edges into reticular edges, which are responsible for loop formation, and tree edges. In addition, we perform a detailed and rigorous theoretical analysis of the sensitivity of the hierarchical levels to weight perturbations. In doing so, we show that the ordering of the reticular edges is more robust to noise in weight estimation than is the ordering of the tree edges. We discuss applications of this generalized Horton-Strahler ordering to the study of leaf venation and other biological networks. 相似文献
9.
Genome-scale metabolic network reconstructions in microorganisms have been formulated and studied for about 8 years. The constraint-based approach has shown great promise in analyzing the systemic properties of these network reconstructions. Notably, constraint-based models have been used successfully to predict the phenotypic effects of knock-outs and for metabolic engineering. The inherent uncertainty in both parameters and variables of large-scale models is significant and is well suited to study by Monte Carlo sampling of the solution space. These techniques have been applied extensively to the reaction rate (flux) space of networks, with more recent work focusing on dynamic/kinetic properties. Monte Carlo sampling as an analysis tool has many advantages, including the ability to work with missing data, the ability to apply post-processing techniques, and the ability to quantify uncertainty and to optimize experiments to reduce uncertainty. We present an overview of this emerging area of research in systems biology. 相似文献
10.
Metabolic reactions are fundamental to living organisms, and a large number of reactions simultaneously occur at a given time in living cells transforming diverse metabolites into each other. There has been an ongoing debate on how to classify metabolites with respect to their importance for metabolic performance, usually based on the analysis of topological properties of genome scale metabolic networks. However, none of these studies have accounted quantitatively for flux in metabolic networks, thus lacking an important component of a cell’s biochemistry.We therefore analyzed a genome scale metabolic network of Escherichia coli by comparing growth under 19 different growth conditions, using flux balance analysis and weighted network centrality investigation. With this novel concept of flux centrality we generated metabolite rankings for each particular growth condition. In contrast to the results of conventional analysis of genome scale metabolic networks, different metabolites were top-ranking dependent on the growth condition. At the same time, several metabolites were consistently among the high ranking ones. Those are associated with pathways that have been described by biochemists as the most central part of metabolism, such as glycolysis, tricarboxylic acid cycle and pentose phosphate pathway. The values for the average path length of the analyzed metabolite networks were between 10.5 and 12.6, supporting recent findings that the metabolic network of E. coli is not a small-world network. 相似文献
11.
12.
Lacroix V Cottret L Thébault P Sagot MF 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2008,5(4):594-617
There has been a renewed interest for metabolism in the computational biology community, leading to an avalanche of papers coming from methodological network analysis as well as experimental and theoretical biology. This paper is meant to serve as an initial guide for both the biologists interested in formal approaches and the mathematicians or computer scientists wishing to inject more realism into their models. The paper is focused on the structural aspects of metabolism only. The literature is vast enough already, and the thread through it difficult to follow even for the more experienced worker in the field. We explain methods for acquiring data and reconstructing metabolic networks, and review the various models that have been used for their structural analysis. Several concepts such as modularity are introduced, as are the controversies that have beset the field these past few years, for instance, on whether metabolic networks are small-world or scale-free, and on which model better explains the evolution of metabolism. Clarifying the work that has been done also helps in identifying open questions and in proposing relevant future directions in the field, which we do along the paper and in the conclusion. 相似文献
13.
Wanwipa Vongsangnak Rawisara Ruenwai Xin Tang Xinjie Hu Hao Zhang Bairong Shen Yuanda Song Kobkul Laoteng 《Gene》2013
Microbial lipids are becoming an attractive option for the industrial production of foods and oleochemicals. To investigate the lipid physiology of the oleaginous microorganisms, at the system level, genome-scale metabolic networks of Mortierella alpina and Mucor circinelloides were constructed using bioinformatics and systems biology. As scaffolds for integrated data analysis focusing on lipid production, consensus metabolic routes governing fatty acid synthesis, and lipid storage and mobilisation were identified by comparative analysis of developed metabolic networks. Unique metabolic features were identified in individual fungi, particularly in NADPH metabolism and sterol biosynthesis, which might be related to differences in fungal lipid phenotypes. The frameworks detailing the metabolic relationship between M. alpina and M. circinelloides generated in this study is useful for further elucidation of the microbial oleaginicity, which might lead to the production improvement of microbial oils as alternative feedstocks for oleochemical industry. 相似文献
14.
Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism. 相似文献
15.
Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at . 相似文献
16.
A new, to our knowledge, group contribution method based on the group contribution method of Mavrovouniotis is introduced for estimating the standard Gibbs free energy of formation (ΔfG′°) and reaction (ΔrG′°) in biochemical systems. Gibbs free energy contribution values were estimated for 74 distinct molecular substructures and 11 interaction factors using multiple linear regression against a training set of 645 reactions and 224 compounds. The standard error for the fitted values was 1.90 kcal/mol. Cross-validation analysis was utilized to determine the accuracy of the methodology in estimating ΔrG′° and ΔfG′° for reactions and compounds not included in the training set, and based on the results of the cross-validation, the standard error involved in these estimations is 2.22 kcal/mol. This group contribution method is demonstrated to be capable of estimating ΔrG′° and ΔfG′° for the majority of the biochemical compounds and reactions found in the iJR904 and iAF1260 genome-scale metabolic models of Escherichia coli and in the Kyoto Encyclopedia of Genes and Genomes and University of Minnesota Biocatalysis and Biodegradation Database. A web-based implementation of this new group contribution method is available free at http://sparta.chem-eng.northwestern.edu/cgi-bin/GCM/WebGCM.cgi. 相似文献
17.
The huge number of elementary flux modes in genome-scale metabolic networks makes analysis based on elementary flux modes intrinsically difficult. However, it has been shown that the elementary flux modes with optimal yield often contain highly redundant information. The set of optimal-yield elementary flux modes can be compressed using modules. Up to now, this compression was only possible by first enumerating the whole set of all optimal-yield elementary flux modes. We present a direct method for computing modules of the thermodynamically constrained optimal flux space of a metabolic network. This method can be used to decompose the set of optimal-yield elementary flux modes in a modular way and to speed up their computation. In addition, it provides a new form of coupling information that is not obtained by classical flux coupling analysis. We illustrate our approach on a set of model organisms. 相似文献
18.
Background
To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. 相似文献19.
Protein-protein interactions are operative at almost every level of cell structure and function as, for example, formation of sub-cellular organelles, packaging of chromatin, muscle contraction, signal transduction, and regulation of gene expression. Public databases of reported protein-protein interactions comprise hundreds of thousands interactions, and this number is steadily growing. Elucidating the implications of protein-protein interactions for the regulation of the underlying cellular or extra-cellular reaction network remains a great challenge for computational biochemistry. In this work, we have undertaken a systematic and comprehensive computational analysis of reported enzyme-enzyme interactions in the metabolic networks of the model organisms Escherichia coli and Saccharomyces cerevisiae. We grouped all enzyme pairs according to the topological distance that the catalyzed reactions have in the metabolic network and performed a statistical analysis of reported enzyme-enzyme interactions within these groups. We found a higher frequency of reported enzyme-enzyme interactions within the group of enzymes catalyzing reactions that are adjacent in the network, i.e. sharing at least one metabolite. As some of these interacting enzymes have already been implicated in metabolic channeling our analysis may provide a useful screening for candidates of this phenomenon. To check for a possible regulatory role of interactions between enzymes catalyzing non-neighboring reactions, we determined potentially regulatory enzymes using connectivity in the network and absolute change of Gibbs free energy. Indeed a higher portion of reported interactions pertain to such potentially regulatory enzymes. 相似文献
20.