首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional markers in wheat: current status and future prospects   总被引:10,自引:0,他引:10  
Functional markers (FM) are developed from sequence polymorphisms present in allelic variants of a functional gene at a locus. FMs accurately discriminate alleles of a targeted gene, and are ideal molecular markers for marker-assisted selection in wheat breeding. In this paper, we summarize FMs developed and used in common wheat. To date, more than 30 wheat loci associated with processing quality, agronomic traits, and disease resistance, have been cloned, and 97 FMs were developed to identify 93 alleles based on the sequences of those genes. A general approach is described for isolation of wheat genes and development of FMs based on in silico cloning and comparative genomics. The divergence of DNA sequences of different alleles that affect gene function is summarized. In addition, 14 molecular markers specific for alien genes introduced from common wheat relatives were also described. This paper provides updated information on all FMs and gene-specific STS markers developed so far in wheat and should facilitate their application in wheat breeding programs.  相似文献   

2.
3.
4.
Relative to the commonly used mitochondrial and nuclear protein‐coding genes, the noncoding intron sequences are a promising source of informative markers that have the potential to resolve difficult phylogenetic nodes such as rapid radiations and recent divergences. Yet many issues exist in the use of intron markers, which prevent their extensive application as conventional markers. We used the diverse group of snakes as an example to try paving the way for massive identification and application of intron markers. We performed a series of bioinformatics screenings which identified appropriate introns between single‐copy and conserved exons from two snake genomes, adding particular constraints on sequence length variability and sequence variability. A total of 1,273 candidate intron loci were retrieved. Primers for nested polymerase chain reaction (PCR) were designed for over a hundred candidates and tested in 16 snake representatives. 96 intron markers were developed that could be amplified across a broad range of snake taxa with high PCR successful rates. The markers were then applied to 49 snake samples. The large number of amplicons was subjected to next‐generation sequencing (NGS). An analytic strategy was developed to accurately recover the amplicon sequences, and approximately, 76% of the marker sequences were recovered. The average p‐distances of the intron markers at interfamily, intergenus, interspecies, and intraspecies levels were .168, .052, .015, and .004, respectively, suggesting that they were useful to study snake relationships of different evolutionary depths. A snake phylogeny was constructed with the intron markers, which produced concordant results with robust support at both interfamily and intragenus levels. The intron markers provide a convenient way to explore the signals in the noncoding regions to address the controversies on the snake tree. Our improved strategy of genome screening is effective and can be applied to other animal groups. NGS coupled with appropriate sequence processing can greatly facilitate the extensive application of molecular markers.  相似文献   

5.
The application of next-generation sequencing (NGS) technologies for the development of simple sequence repeat (SSR) or microsatellite loci for genetic research in the botanical sciences is described. Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been a difficult and costly process. NGS technologies allow the efficient identification of large numbers of microsatellites at a fraction of the cost and effort of traditional approaches. The major advantage of NGS methods is their ability to produce large amounts of sequence data from which to isolate and develop numerous genome-wide and gene-based microsatellite loci. The two major NGS technologies with emergent application in SSR isolation are 454 and Illumina. A review is provided of several recent studies demonstrating the efficient use of 454 and Illumina technologies for the discovery of microsatellites in plants. Additionally, important aspects during NGS isolation and development of microsatellites are discussed, including the use of computational tools and high-throughput genotyping methods. A data set of microsatellite loci in the plastome and mitochondriome of cranberry (Vaccinium macrocarpon Ait.) is provided to illustrate a successful application of 454 sequencing for SSR discovery. In the future, NGS technologies will massively increase the number of SSRs and other genetic markers available to conduct genetic research in understudied but economically important crops such as cranberry.  相似文献   

6.
The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.  相似文献   

7.
The use of Next Generation Sequencing (NGS) techniques to identify microsatellite markers has replaced more time intensive methods such as molecular cloning. The main advantage of NGS over traditional methods of identifying microsatellite markers is the generation of many more sequences with less effort. It is possible to design primers from unenriched DNA, thereby further reducing the workload and also allowing the use of SSRs that are difficult to enrich (e.g., TA/AT and TAA/ATT). We present microsatellite primer pairs that may be used for phylogeographic analysis as well as to infer the geographical origin of traded material of Catha edulis, which contains two amphetamines that are controlled substances in many counties. We used data from two partial 454 pyrosequencing runs that generated about 2000 sequences containing microsatellites (3% of all sequences) as well as flanking regions sufficient for primer design. Using 23 samples of C. edulis we identified 27 single-copy markers that were broadly amplified across the sampled individuals; 18 showed polymorphism information content (PIC) higher than 0.5. The genetic structure in wild individuals is concordant with their geographic origins; wild samples from northern Kenya are more closely related to Ethiopian samples than are other wild samples from Kenya. The geographic differences in allele frequencies indicate that microsatellite analysis can be used to determine the geographic source of cultivated and wild collected material.  相似文献   

8.
9.
DNA markers that allow for identification of resistance genes in rice germplasm have a great advantage in resistance breeding because they can assess the existence of the genes without laborious inoculation tests. Functional markers (FMs), which are designed from functional polymorphisms within the sequence of genes, are unaffected by nonfunctional allelic variation and make it possible to identify an individual gene. We previously showed that the resistance function of the rice blast resistance gene Pit in a resistant cultivar, K59, was mainly acquired by up-regulated promoter activity through the insertion of a long terminal repeat (LTR) retrotransposon upstream of Pit. Here, we developed PCR-based DNA markers derived from the LTR-retrotransposon sequence and used these markers to screen worldwide accessions of rice germplasm. We identified 5 cultivars with the LTR-retrotransposon insertion out of 68 rice accessions. The sequence and expression pattern of Pit in the five cultivars were the same as those in K59 and all showed Pit-mediated blast resistance. The results suggest that the functional Pit identified using the markers was derived from a common progenitor. Additionally, comparison of the Pit coding sequences between K59 and susceptible cultivars revealed that one nucleotide polymorphism, which caused an amino acid substitution, offered another target for a FM. These results indicate that our DNA markers should enhance prediction of Pit function and be applicable to a range of rice varieties/landraces cultivated in various regions worldwide and belonging to the temperate japonica, tropical japonica, and indica groups.  相似文献   

10.
Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified.  相似文献   

11.
Nested Association Mapping for Identification of Functional Markers   总被引:1,自引:0,他引:1  
Identification of functional markers (FMs) provides information about the genetic architecture underlying complex traits. An approach that combines the strengths of linkage and association mapping, referred to as nested association mapping (NAM), has been proposed to identify FMs in many plant species. The ability to identify and resolve FMs for complex traits depends upon a number of factors including frequency of FM alleles, magnitudes of their genetic effects, disequilibrium among functional and nonfunctional markers, statistical analysis methods, and mating design. The statistical characteristics of power, accuracy, and precision to identify FMs with a NAM population were investigated using three simulation studies. The simulated data sets utilized publicly available genetic sequences and simulated FMs were identified using least-squares variable selection methods. Results indicate that FMs with simple additive genetic effects that contribute at least 5% to the phenotypic variability in at least five segregating families of a NAM population consisting of recombinant inbred progeny derived from 28 matings with a single reference inbred will have adequate power to accurately and precisely identify FMs. This resolution and power are possible even for genetic architectures consisting of disequilibrium among multiple functional and nonfunctional markers in the same genomic region, although the resolution of FMs will deteriorate rapidly if more than two FMs are tightly linked within the same amplicon. Finally, nested mating designs involving several reference parents will have a greater likelihood of resolving FMs than single reference designs.THE primary purpose for identifying functional markers (FMs) associated with complex traits in plant species is to provide molecular genetic information underlying variability upon which both artificial and natural selection are based. FMs are defined as polymorphic sites within genomes that causally affect phenotypic trait variability (Andersen and Lubberstedt 2003). This definition is a pragmatic recognition that phenotypic variability can be due to genomic variability located outside of open reading frames. Forward genetics approaches to associate naturally occurring structural genomic variants with phenotypic variability can be broadly categorized as (1) linkage mapping, also referred to as quantitative trait locus (QTL) mapping, (2) association genetic mapping, also known as linkage disequilibrium (LD) mapping, and (3) designs that combine linkage and LD mapping.The third approach based on the concept of combining LD with QTL mapping is a natural extension of the multifamily QTL approach and has been referred as joint linkage and linkage disequilibrium mapping (JLLDM) (Xiong and Jin 2000; Farnir et al. 2002; Wu et al. 2002; Perez-Enciso 2003; Jung et al. 2005) in samples from natural populations. The combined approach also has been applied to designed mapping families sampled from plant breeding populations (Xu 1998a; Jannink and Jansen 2000; Jannink and Wu 2003; Jansen et al. 2003). A special case of designed mapping families that are interconnected, known as nested association mapping (NAM), was proposed by Yu et al. (2008). As originally proposed, a NAM population consists of multiple families of recombinant inbred lines (RILs) derived from multiple inbred lines crossed to a single reference inbred line. Implicitly, genomic information is composed of high-density genotypes of parental inbred lines and low-density genotypes from segregating progeny. If the segregating progeny are RILs or doubled haploid lines (DHLs), then the genomic information can be “immortalized” for associations with phenotypes obtained through long-term longitudinal studies (Nordborg and Weigel 2008).A NAM population consisting of 25 families with 200 RILs for each family has been developed and released as a genetic resource for identification of FMs in maize (Yu et al. 2008). Other publicly available NAM populations are being developed for several species including Arabidopsis thaliana (Buckler and Gore 2007), barley (R. Wise, personal communication), sorghum (J. Yu, personal communication), and soybean (B. Diers, personal communication).The power, accuracy, and precision of identifying FMs in experimental NAM populations have not been investigated for complex genetic architectures. These statistical properties depend upon a number of factors including the following:
  1. Data analysis method: Some methods are more powerful than others; however, experimental biologists prefer methods implemented in existing software packages. Are least-squares methods sufficiently powerful to identify FMs in established and developing NAM populations?
  2. Frequency of functional markers and magnitudes of genetic effects: Development of a NAM population will change the allele frequencies of the FM relative to the reference population from which the lines are sampled. How will allele frequency and magnitude of genetic effects in a typical NAM population affect the ability to identify FMs?
  3. Disequilibrium among functional and nonfunctional markers: Disequilibrium may exist among alleles within subpopulations even when there is no physical basis for genetic linkage. To what extent can the NAM design address consequences of gametic disequilibrium (population structure) in the reference population?
  4. Multiple FMs in the same genomic region: If multiple FMs are physically located in the same genomic region, will equilibrium among the parental lines enable resolution of multiple FMs?
  5. Mating design: An appropriate mating design can maximize the number of families that are informative for FMs. Will multiple-reference mating designs improve the probability of identifying FMs?
These five questions were addressed.  相似文献   

12.
Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms.Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a “gray zone” where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci – Stepwise Threshold Clustering (STC) – that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.  相似文献   

13.
Next-generation sequencing (NGS) is a powerful tool for massive detection of DNA sequence variants such as single nucleotide polymorphisms (SNPs), multi-nucleotide polymorphisms (MNPs) and insertions/deletions (indels). For routine screening of numerous samples, these variants are often converted into cleaved amplified polymorphic sequence (CAPS) markers which are based on the presence versus absence of restriction sites within PCR products. Current computational tools for SNP to CAPS conversion are limited and usually infeasible to use for large datasets as those generated with NGS. Moreover, there is no available tool for massive conversion of MNPs and indels into CAPS markers. Here, we present VCF2CAPS–a new software for identification of restriction endonucleases that recognize SNP/MNP/indel-containing sequences from NGS experiments. Additionally, the program contains filtration utilities not available in other SNP to CAPS converters–selection of markers with a single polymorphic cut site within a user-specified sequence length, and selection of markers that differentiate up to three user-defined groups of individuals from the analyzed population. Performance of VCF2CAPS was tested on a thoroughly analyzed dataset from a genotyping-by-sequencing (GBS) experiment. A selection of CAPS markers picked by the program was subjected to experimental verification. CAPS markers, also referred to as PCR-RFLPs, belong to basic tools exploited in plant, animal and human genetics. Our new software–VCF2CAPS–fills the gap in the current inventory of genetic software by high-throughput CAPS marker design from next-generation sequencing (NGS) data. The program should be of interest to geneticists involved in molecular diagnostics. In this paper we show a successful exemplary application of VCF2CAPS and we believe that its usefulness is guaranteed by the growing availability of NGS services.

This is a PLOS Computational Biology Software paper.
  相似文献   

14.
Although new and emerging next-generation sequencing (NGS) technologies have reduced sequencing costs significantly, much work remains to implement them for de novo sequencing of complex and highly repetitive genomes such as the tetraploid genome of Upland cotton (Gossypium hirsutum L.). Herein we report the results from implementing a novel, hybrid Sanger/454-based BAC-pool sequencing strategy using minimum tiling path (MTP) BACs from Ctg-3301 and Ctg-465, two large genomic segments in A12 and D12 homoeologous chromosomes (Ctg). To enable generation of longer contig sequences in assembly, we implemented a hybrid assembly method to process ~35x data from 454 technology and 2.8-3x data from Sanger method. Hybrid assemblies offered higher sequence coverage and better sequence assemblies. Homology studies revealed the presence of retrotransposon regions like Copia and Gypsy elements in these contigs and also helped in identifying new genomic SSRs. Unigenes were anchored to the sequences in Ctg-3301 and Ctg-465 to support the physical map. Gene density, gene structure and protein sequence information derived from protein prediction programs were used to obtain the functional annotation of these genes. Comparative analysis of both contigs with Arabidopsis genome exhibited synteny and microcollinearity with a conserved gene order in both genomes. This study provides insight about use of MTP-based BAC-pool sequencing approach for sequencing complex polyploid genomes with limited constraints in generating better sequence assemblies to build reference scaffold sequences. Combining the utilities of MTP-based BAC-pool sequencing with current longer and short read NGS technologies in multiplexed format would provide a new direction to cost-effectively and precisely sequence complex plant genomes.  相似文献   

15.
16.
With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat ( Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat.  相似文献   

17.
Even though next-generation sequencing (NGS) has now become the predominant state-of-the-art technique for genotyping populations, amplified fragment length polymorphism (AFLP) DNA fingerprinting is still a relevant method, thanks to its versatility, cost-effectiveness, independence of prior sequence information and broad applicability. Even though the number of AFLP studies reached its peak in 2012, it is still applied extensively for phylogenetic analysis, genotyping or identifying non-model species, which often feature complex and large genomes. For these purposes, tools continue to be developed for designing AFLP studies, scoring AFLPs or handling AFLP data. Moreover, AFLP studies embrace the NGS technology; for example, the whole-genome sequence of model species is used to design more efficient AFLP studies for non-model species. Conversely, in complexity reduction of polymorphic sequences and restriction site-associated DNA sequencing studies, polymorphisms are often found to be present in many restriction sites, which can still be studied as AFLPs. We discuss the latest advances in AFLP-based studies in the era of NGS and anticipate that AFLP will remain a relevant method in the near future, even for species with a known genome, owing to its many promising new features such as methylation-sensitive-AFLP. Here, we also present an optimized pipeline for converting AFLP markers into single-locus markers, which can be applied in both traditional AFLP and NGS studies.  相似文献   

18.
Biosafety implications of selectable marker genes that are integrated into the transgenic plants are discussed. In the laboratory, selectable marker genes are used at two stages to distinguish transformed cells out of a large population of nontransformed cells: 1) initial assembly of gene cassettes is generally done in E. coli on easily manipulatable plasmid vectors that contain the selectable marker genes which often code for antibiotic inactivating enzymes, and 2) Then the gene cassettes are inserted into the plant genome by various transformation methods. For selection of transformed plant cells, antibiotic and herbicide resistance genes are widely used. Consequently, transgenic plants can end up with DNA sequences of selectable markers that are functional in E. coli and plants. The potential for horizontal gene transfer of selectable markers from transgenic plants to other organisms both in the environment and in the intestine of humans and animals is evaluated. Mechanisms and consequences of the transfer of marker genes from plants to other organisms is examined. Strategies to avoid marker genes in plants are discussed. It is possible to avoid the use of controversial selectable markers in the construction of transgenic plants.  相似文献   

19.
20.
Next-generation DNA sequencing (NGS) approaches are rapidly surpassing Sanger sequencing for characterizing the diversity of natural microbial communities. Despite this rapid transition, few comparisons exist between Sanger sequences and the generally much shorter reads of NGS. Operational taxonomic units (OTUs) derived from full-length (Sanger sequencing) and pyrotag (454 sequencing of the V9 hypervariable region) sequences of 18S rRNA genes from 10 global samples were analyzed in order to compare the resulting protistan community structures and species richness. Pyrotag OTUs called at 98% sequence similarity yielded numbers of OTUs that were similar overall to those for full-length sequences when the latter were called at 97% similarity. Singleton OTUs strongly influenced estimates of species richness but not the higher-level taxonomic composition of the community. The pyrotag and full-length sequence data sets had slightly different taxonomic compositions of rhizarians, stramenopiles, cryptophytes, and haptophytes, but the two data sets had similarly high compositions of alveolates. Pyrotag-based OTUs were often derived from sequences that mapped to multiple full-length OTUs at 100% similarity. Thus, pyrotags sequenced from a single hypervariable region might not be appropriate for establishing protistan species-level OTUs. However, nonmetric multidimensional scaling plots constructed with the two data sets yielded similar clusters, indicating that beta diversity analysis results were similar for the Sanger and NGS sequences. Short pyrotag sequences can provide holistic assessments of protistan communities, although care must be taken in interpreting the results. The longer reads (>500 bp) that are now becoming available through NGS should provide powerful tools for assessing the diversity of microbial eukaryotic assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号