首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The term “cladist” has distinct meanings in distinct contexts. Communication between philosophers, historians, and biologists has been hindered by different understandings of the term in various contexts. In this paper I trace historical and conceptual connections between several broadly distinct senses of the term “cladist”. I propose seven specific definitions that capture distinct contemporary uses. This serves to disambiguate some cases where the meaning is unclear, and will help resolve apparent disagreements that in fact result from conflicting understandings of the term.  相似文献   

2.
3.
Many scientists and philosophers of science are troubled by the relative isolation of developmental from evolutionary biology. Reconciling the science of development with the science of heredity preoccupied a minority of biologists for much of the twentieth century, but these efforts were not corporately successful. Mainly in the past fifteen years, however, these previously dispersed integrating programmes have been themselves synthesized and so reinvigorated. Two of these more recent synthesizing endeavours are evolutionary developmental biology (EDB, or "evo-devo") and developmental systems theory (DST). While the former is a bourgeoning and scientifically well-respected biological discipline, the same cannot be said of DST, which is virtually unknown among biologists. In this review, we provide overviews of DST and EDB, summarize their key tenets, examine how they relate to one another and to the study of epigenetics, and survey the impact that DST and EDB have had (and in future should have) on biological theory and practice.  相似文献   

4.
For a long time the definitions of species have been mainly restricted to logicians and philosophers; with the contribution of biologists, the number of concepts increased dramatically. The concepts elaborated by authors of the evolutionary synthesis seemed decisive for a time but the number of definitions proposed was never as high as in the last half century. In the present review, a list of classical or less well-known definitions are proposed with some commentaries.  相似文献   

5.
The existence of a genetic program of development was proposed by molecular biologists in the nineteen-sixties. Historians and philosophers of science have since thoroughly criticized this notion. To fully appreciate its significance, it is interesting to consider the research which was pursued during this period by molecular biologists who proposed this notion. This study focuses on Fran?ois Jacob's work and on the model of development supported by his lab in the early seventies, the T-complex model. This episode of Jacob's scientific activity has since been forgotten. Characterization of this model shows that the notion of program was used in a metaphoric way and that it did not put any constraint on the work pursued in the lab at that time. Some attention is devoted to the origin of this metaphor in the context of the nineteen-seventies.  相似文献   

6.
The concept of species is one of the core concepts in biology and one of the cornerstones of evolutionary biology, yet it is rife with conceptual problems. Philosophers of biology have been discussing the concept of species for decades, and in doing so they sometimes appeal to the views of biologists. However, their statements as to what biologists think are seldom supported by empirical data. In order to investigate what biologists actually think about the key issues related to the problem of species, we have conducted a survey on the sample of 193 biologists from the population of biologists from over 150 biology departments at universities in the US and the EU. This article presents and discusses the results of the survey. Some results confirm and others falsify the reiterated statements of philosophers of biology as to what biologists think, but all results we obtained should be informative and relevant for future discussions of the problem of species.  相似文献   

7.
Hull DL 《Acta biotheoretica》2002,50(2):117-128
Academia is subdivided into separate disciplines, most of which are quite discrete. In this review I trace the interactions between two of these disciplines: biology and philosophy of biology. I concentrate on those topics that have the most extensive biological content: function, species, systematics, selection, reduction and development. In the final section of this paper I touch briefly on those issues that biologists and philosophers have addressed that do not have much in the way of biological content.  相似文献   

8.
The question ‘what is an individual’ does not often arise in studies within the field of behavioural ecology. Generally behavioural ecologists do not think about what makes an individual because they tend to use intuitive working concepts of individuality. Rarely do they explicitly mention how individuality affects their experimental design and interpretation of results. By contrast, the concept of individuality continues to intrigue philosophers of biology. It is interesting that while philosophers of biology debate definitions of individuality, biologists generally use the concept of individuality every day without much thought. Here we review the philosophical approaches to defining biological individuality, and illustrate how the biological individuality concepts used by biologists are affected by their study question and choice of organism. We clarify the behavioural perspective of biological individuality by introducing the concept of the behavioural individual. The notion of the behavioural individual is particularly interesting when explored in less‐conventional study organisms. By including less‐conventional organisms, it becomes clear why the concept of biological individuality is usually intuitive in behavioural ecology.  相似文献   

9.
Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause–effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist. Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach might have been underestimated by critics of contemporary evolutionary biology.  相似文献   

10.
A number of influential biologists are currently pursuing efforts to restore previously extinct species. But for decades, philosophers of biology have regarded “de-extinction” as conceptually incoherent. Once a species is gone, it is gone forever. We argue that a range of metaphysical, biological, and ethical grounds for opposing de-extinction are at best inconclusive and that a pragmatic stance that allows for its possibility is more appealing.  相似文献   

11.
This paper, addressed to both philosophers of science and stem cell biologists, aims to reduce the obscurity of and disagreements over the nature of stemness. The two most prominent current theories of stemness—the entity theory and the state theory—are both biologically and philosophically unsatisfactory. Improved versions of these theories are likely to converge. Philosophers of science can perform a much needed service in clarifying and formulating ways of testing entity and state theories of stemness. To do so, however, philosophers should acquaint themselves with the latest techniques and approaches employed by bench scientists, such as the use of proteomics, genome-wide association studies, and ChIP-on-chip arrays. An overarching theme of this paper is the desirability of bringing closer together the philosophy of science and the practice of scientific research.  相似文献   

12.
Darwin's laws     
There is widespread agreement among contemporary philosophers of biology and philosophically-minded biologists that Darwin's insights about the intrusion of chance processes into biological regularities undermines the possibility of there being biological laws. Darwin made references to "designed laws." He also freely described some laws as having exceptions. This paper provides a philosophical analysis of the notion of scientific laws that was dominant in Darwin's time, and in all probability the one which he inherited. The analysis of laws is then used to show how it could have been natural for Darwin to believe in designed laws that had exceptions, and to highlight the continuity between the metaphysics of pre-Darwinian, Darwinian, and contemporary biological science. One important result is the removal of one motivation for the anti-laws sentiment in philosophy and biology.  相似文献   

13.
The concept of Irreducible Complexity (IC) has played a pivotal role in the resurgence of the creationist movement over the past two decades. Evolutionary biologists and philosophers have unambiguously rejected the purported demonstration of "intelligent design" in nature, but there have been several, apparently contradictory, lines of criticism. We argue that this is in fact due to Michael Behe's own incoherent definition and use of IC. This paper offers an analysis of several equivocations inherent in the concept of Irreducible Complexity and discusses the way in which advocates of the Intelligent Design Creationism (IDC) have conveniently turned IC into a moving target. An analysis of these rhetorical strategies helps us to understand why IC has gained such prominence in the IDC movement, and why, despite its complete lack of scientific merits, it has even convinced some knowledgeable persons of the impending demise of evolutionary theory.  相似文献   

14.
Images (e.g., figures) are important experimental results that are typically reported in bioscience full-text articles. Biologists need to access images to validate research facts and to formulate or to test novel research hypotheses. On the other hand, biologists live in an age of information explosion. As thousands of biomedical articles are published every day, systems that help biologists efficiently access images in literature would greatly facilitate biomedical research. We hypothesize that much of image content reported in a full-text article can be summarized by the sentences in the abstract of the article. In our study, more than one hundred biologists had tested this hypothesis and more than 40 biologists had evaluated a novel user-interface BioEx that allows biologists to access images directly from abstract sentences. Our results show that 87.8% biologists were in favor of BioEx over two other baseline user-interfaces. We further developed systems that explored hierarchical clustering algorithms to automatically identify abstract sentences that summarize the images. One of the systems achieves a precision of 100% that corresponds to a recall of 4.6%.  相似文献   

15.
Sequencing of genomes did not reveal the "secret of life" and left biologists and philosophers unsatisfied. It became clear that post-genetic, epigenetic (taken in a wide sense, post-translational) events play an important role even during development and adult homeostasis. Such mechanisms become predominant during aging, and explain the differential decline of functions (aging in "spare-parts"). Some of these post-translational mechanisms, leading to auto-amplifying vicious circles, will be described.  相似文献   

16.
CAPRI is a communitywide experiment to assess the capacity of protein-docking methods to predict protein-protein interactions. Nineteen groups participated in rounds 1 and 2 of CAPRI and submitted blind structure predictions for seven protein-protein complexes based on the known structure of the component proteins. The predictions were compared to the unpublished X-ray structures of the complexes. We describe here the motivations for launching CAPRI, the rules that we applied to select targets and run the experiment, and some conclusions that can already be drawn. The results stress the need for new scoring functions and for methods handling the conformation changes that were observed in some of the target systems. CAPRI has already been a powerful drive for the community of computational biologists who development docking algorithms. We hope that this issue of Proteins will also be of interest to the community of structural biologists, which we call upon to provide new targets for future rounds of CAPRI, and to all molecular biologists who view protein-protein recognition as an essential process.  相似文献   

17.
Here we argue that the concept of strategies, as it was introduced into biology by John Maynard Smith, is a prime illustration of the four dimensions of theoretical biology in the post-genomic era. These four dimensions are: data analysis and management, mathematical and computational model building and simulation, concept formation and analysis, and theory integration. We argue that all four dimensions of theoretical biology are crucial to future interactions between theoretical and empirical biologists as well as with philosophers of biology.  相似文献   

18.
Fundamental issues in systems biology   总被引:7,自引:0,他引:7  
In the context of scientists' reflections on genomics, we examine some fundamental issues in the emerging postgenomic discipline of systems biology. Systems biology is best understood as consisting of two streams. One, which we shall call 'pragmatic systems biology', emphasises large-scale molecular interactions; the other, which we shall refer to as 'systems-theoretic biology', emphasises system principles. Both are committed to mathematical modelling, and both lack a clear account of what biological systems are. We discuss the underlying issues in identifying systems and how causality operates at different levels of organisation. We suggest that resolving such basic problems is a key task for successful systems biology, and that philosophers could contribute to its realisation. We conclude with an argument for more sociologically informed collaboration between scientists and philosophers.  相似文献   

19.
We draw on Short’s work on Peirce’s theory of signs to propose a new general definition of interpretation. Short argues that Peirce’s semiotics rests on his naturalised teleology. Our proposal extends Short’s work by modifying his definition of interpretation so as to make it more generally applicable to putatively interpretative processes in biological systems. We use our definition as the basis of an account of different kinds of misinterpretation and we discuss some questions raised by the definition by reference to parallel problems in the field of teleosemantics. We propose that interpretative responses fulfilling the criteria of our definition may be made by relatively simple molecular entities and we suggest two specific empirical applications of the definition to experimental work in the field of origin of life research. Our wider aim is to suggest that a well formulated naturalistic definition of interpretation will allow a re-evaluation of the role of semiotic phenomena in biological systems, including the generation of empirically testable hypotheses.  相似文献   

20.
Mary Winsor (2003) argues against the received view that pre-Darwinian taxonomy was characterized mainly by essentialism. She argues, instead, that the methods of pre-Darwinian taxonomists, in spite of whatever their beliefs, were that of clusterists, so that the received view, propagated mainly by certain modern biologists and philosophers of biology, should at last be put to rest as a myth. I argue that shes right when it comes to higher taxa, but wrong when it comes the most important category of all, the species category.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号