首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors related to bacterial environment of nests are of primary interest for understanding the causes of embryo infection and the evolution of antimicrobial defensive traits in birds. Nest visitors such as parasites could act as vectors for bacteria and/or affect the hygienic conditions of nests and hence influence the nest bacterial environment. In the present study, we explored some predictions of this hypothetical scenario in the great spotted cuckoo (Clamator glandarius)–magpie (Pica pica) system of brood parasitism. Great spotted cuckoos visit the nests of their magpie hosts and frequently damage some of the host eggs when laying eggs or on subsequent visits. Therefore, it represents a good system for testing the effect of nest visitors on the bacterial environment of nests. In accordance with this hypothesis, we found that the bacterial load of magpie eggshells was greater in parasitized nests, which may suggest that brood parasitism increases the probability of bacterial infection of magpie eggs. Moreover, comparisons of bacterial loads of cuckoo and magpie eggs revealed that: (1) cuckoo eggshells harboured lower bacterial densities than those of their magpie hosts in the same nests and (2) the prevalence of bacteria inside unhatched eggs was higher for magpies than for great spotted cuckoos. These interspecific differences were predicted because brood parasitic eggs (but not host eggs) always experience the bacterial environments of parasitized nests. Therefore, the results obtained in the present study suggest that parasitic eggs are better adapted to environments with a high risk of bacterial contamination than those of their magpie hosts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 836–848.  相似文献   

2.
Passerine hosts of parasitic cuckoos usually vary in their abilityto discriminate and reject cuckoo eggs. Costs of discriminationand rejection errors have been invoked to explain the maintenanceof this within-population variability. Recently, enforcementof acceptance by parasites has been identified as a rejectioncost in the magpie (Pica pica) and its brood parasite, the greatspotted cuckoo (Clamator glandarius). Previous experimentalwork has shown that rejecter magpies suffer from increased nestpredation by the great spotted cuckoo. Cuckoo predatory behavioris supposed to confer a selective advantage to the parasitebecause magpies experiencing a reproductive failure may providea second opportunity for the cuckoo to parasitize a replacementclutch. This hypothesis implicitly assumes that magpies modulatetheir propensity to reject parasite eggs as a function of previousexperience. We tested this hypothesis in a magpie populationbreeding in study plots varying in parasitism rate. Magpie pairs thatwere experimentally parasitized and had their nests depredated,after their rejection behavior had been assessed, changed theirbehavior from rejection to acceptance. The change in host behaviorwas prominent in study plots with high levels of parasitism,but not in plots with rare or no cuckoo parasitism. We discussthree possible explanations for these differences, concludingthat in study plots with a high density of cuckoos, the probability fora rejecter magpie nest of being revisited and depredated bya cuckoo is high, particularly for replacement clutches, and,therefore, the cost for magpies of rejecting a cuckoo egg ina replacement clutch is increased. Moreover, in areas with highlevels of host defense (low parasitism rate), the probabilityof parasitism and predation of rejecter-magpie nests by thecuckoo is reduced in both first and replacement clutches. Therefore,rejecter magpies in such areas should not change their rejectionbehavior in replacement clutches.  相似文献   

3.
Magpies (Pica pica) build large nests that are the target of sexual selection, since males of early breeding pairs provide many sticks for nests and females mated to such males enjoy a material fitness benefit in terms of better quality territory and parental care of superior quality. Great spotted cuckoos (Clamator glandarius) preferentially parasitize large magpie nests and sexual selection for large nests is thus opposed by natural selection due to brood parasitism. Consistent with the hypothesized opposing selection pressures, in a comparative analysis of 14 magpie populations in Europe we found that nest volume was consistently smaller in sympatry than in allopatry with the great spotted cuckoo, in particular in areas with a high parasitism rate and high rates of rejection of mimetic model cuckoo eggs. These observations are consistent with the suggestion that magpies have evolved a smaller nest size in areas where cuckoos have exerted strong selection pressures on them in the recent past.  相似文献   

4.
A long-term study of the interactions between a brood parasite, the great spotted cuckoo Clamator glandarius, and its primary host the magpie Pica pica, demonstrated local changes in the distribution of both magpies and cuckoos and a rapid increase of rejection of both mimetic and non-mimetic model eggs by the host. In rich areas, magpies improved three of their defensive mechanisms: nest density and breeding synchrony increased dramatically and rejection rate of cuckoo eggs increased more slowly. A stepwise multiple regression analysis showed that parasitism rate decreased as host density increased and cuckoo density decreased. A logistic regression analysis indicated that the probability of changes in magpie nest density in the study plots was significantly affected by the density of magpie nests during the previous year (positively) and the rejection rate of mimetic model eggs (negatively). These results are consistent with a hypothesis (the intermittent arms race hypothesis) of spatially structured cyclic changes in parasitism. During periods of parasitism, host defences continuously improve, and as a consequence, the fitness gains for parasites decrease. When host defences against parasites reach a high level, dispersing parasites have a selective advantage if they are able to emigrate to areas of low resistance. Once parasites have left an area hosts will lose their defensive adaptations due to their cost in the absence of parasitism. The scene is then set for re-colonization by great spotted cuckoos. Received: 7 May 1998 / Accepted: 24 August 1998  相似文献   

5.
Juan Soler  Manuel Soler 《Oecologia》2000,125(3):309-320
Brood parasitism is one of the systems where coevolutionary processes have received the most research. Here, we review experiments that suggest a coevolutionary process between the great spotted cuckoo (Clamator glandarius) and its magpie (Pica pica) host. We focus on different stages of establishment of the relationship, from cuckoos selecting individual hosts and hosts defending their nests from adult cuckoos, to the ability of magpies to detect cuckoo eggs in their nests. Novel coevolutionary insights emerge from our synthesis of the literature, including how the evolution of "Mafia" behaviour in cuckoos does not necessarily inhibit the evolution of host recognition and rejection of cuckoo offspring, and how different populations of black-billed magpies in Europe have evolved specific host traits (e.g. nest and clutch size) as a result of interactions with the great spotted cuckoo. Finally, the results of the synthesis reveal the importance of using a meta-population approach when studying coevolution. This is especially relevant in those cases where gene flow among populations with different degrees of brood parasitism explains patterns of coexistence between defensive and non-defensive host phenotypes. We propose the use of a meta-population approach to distinguish between the "evolutionary equilibrium" hypothesis and the "evolutionary lag" hypothesis.  相似文献   

6.
Why should the hosts of brood parasites accept and raise parasitic offspring that differ dramatically in appearance from their own? There are two solutions to this evolutionary enigma. (1) Hosts may not yet have evolved the capability to discriminate against the parasite, or (2) parasite-host systems have reached an evolutionary equilibrium. Avian brood parasites may either gain renesting opportunities or force their hosts to raise parasitic offspring by destroying or preying upon host eggs or nestlings following host ejection of parasite offspring. These hypotheses may explain why hosts do not remove parasite offspring because only then will hosts avoid clutch destruction by the cuckoo. Here we show experimentally that if the egg of the parasitic great spotted cuckoo Clamator glandarius is removed from nests of its magpie Pica pica host, nests suffer significantly higher predation rates than control nests in which parasite eggs have not been removed. Using plasticine model eggs resembling those of magpies and observations of parasites, we also confirm that great spotted cuckoos that have laid an ejected egg are indeed responsible for destruction of magpie nests with experimentally ejected parasite eggs. Cuckoos benefit from destroying host offspring because they thereby induce some magpies to renest and subsequently accept a cuckoo egg.  相似文献   

7.
《Animal behaviour》1988,36(1):262-284
At study sites in Cambridgeshire, England, the percentage of reed warbler, Acrocephalus scirpaceus, nests parasitized by cuckoos, Cuculus canorus, in 2 years was 22·5% and 9·1%. The warblers rejected cuckoo eggs at 19% of parasitized nests. Parasitized clutches suffered less predation than unparasitized clutches, suggesting that the cuckoo itself was the major predator, plundering nests too advanced for parasitism so that the hosts would re-lay. The cuckoos laid a mimetic egg, parasitized nests in the afternoons during the host laying period, usually removed one host egg, laid a remarkably small egg and laid very quickly. Nests were experimentally parasitized with model eggs to study the significance of this procedure. Experiments showed that host discrimination selects for: (1) egg mimicry by cuckoos (poorer matching model eggs were more likely to be rejected); (2) parasitism during the laying period (mimetic eggs put in nests before host laying began were rejected); (3) afternoon laying (mimetic eggs were less likely to be accepted in the early morning than in the afternoon, when hosts were more often absent from the nest); (4) a small egg (large eggs, typical of non-parasitic cuckoos, were more likely to be rejected); (5) rapid laying (a stuffed cuckoo on the nest stimulated increased rejection of model eggs), and (6) sets a limit to host egg removal by cuckoos (if more than one or two are removed desertion may occur). Mimicry may also be selected for because it reduced the chance that second cuckoos can discriminate the first cuckoo's egg from the host's clutch. Predation did not select for mimicry; nests with a non-mimetic egg did not suffer greater predation than those with a mimetic egg. Host rejection of model eggs did not depend on: (1) stage of parasitism once host egg laying had begun (nevertheless cuckoos were more likely to lay early in the host laying period probably to increase the chance the cuckoo chick hatched); (2) removal of a host egg (however, this reduced the incidence of unhatched eggs so cuckoos may remove a host egg so as not to exceed the host incubation limit). There were two costs of rejection, an ‘ejection’ cost (own eggs ejected as well as the cuckoo egg) and, with mimetic eggs, a ‘recognition’ cost (own eggs ejected instead of the cuckoo egg). Reed warblers did not discriminate against unlike chicks (another species) and did not favour either a cuckoo chick or their own chicks when these were placed in two nests side by side. Possible reasons why the hosts discriminate against unlike eggs but not unlike chicks are discussed.  相似文献   

8.
The coevolutionary process between avian brood parasites and their hosts predicts that low intraclutch variation in egg colour appearance favours egg discrimination of parasite eggs by hosts. Low intraclutch variation would also result in high interclutch variation, which would increase the difficulty of evolution of mimicry by the cuckoo, because many host colour patterns might coexist in the same host population. We explored this possibility using an experimental approach in the common magpie, Pica pica, and great spotted cuckoo, Clamator glandarius, system. We artificially parasitized magpie nests with great spotted cuckoo model eggs to assess host response in two populations in Spain (Guadix and Doñana) in relation to intraclutch variation in egg appearance, measured by ultraviolet-visible reflectance spectrophotometry. Individuals that rejected model cuckoo eggs had higher intraclutch variation than accepters, suggesting that an increase, rather than a decrease, in intraclutch variation in magpie egg appearance was advantageous for cuckoo egg discrimination.  相似文献   

9.
Species that suffer from brood parasitism face a considerable reduction in their fitness which selects for the evolution of host defences. To prevent parasitism, hosts can mob or attack brood parasites when they approach the host nest and block the access to the nest by sitting on the clutch. In turn, as a counter‐adaptation, brood parasites evolved secretive behaviours near their host nests. Here, we have studied great spotted cuckoo (Clamator glandarius) egg‐laying behaviour and defence by their magpie (Pica pica) hosts inside the nest using continuous video recordings. We have found several surprising results that contradict some general assumptions. The most important is that most (71%) of the parasitic events by cuckoo females are completed while the magpie females are incubating. By staying in the nest, magpies force cuckoo females to lay their egg facing the high risk of being attacked by the incubating magpie (attack occurred in all but one of the events, n = 15). During these attacks, magpies pecked the cuckoo violently, but could never effectively avoid parasitism. These novel observations expand the sequence of adaptations and counter‐adaptations in the arms race between brood parasites and their hosts during the pre‐laying and laying periods.  相似文献   

10.
The evolution of brood parasitism has long attracted considerable attention among behavioural ecologists, especially in the common cuckoo system. Common cuckoos (Cuculus canorus) are obligatory brood parasites, laying eggs in nests of passerines and specializing on specific host species. Specialized races of cuckoos are genetically distinct. Often in a given area, cuckoos encounter multiple hosts showing substantial variation in egg morphology. Exploiting different hosts should lead to egg-phenotype specialization in cuckoos to match egg phenotypes of the hosts. Here we test this assumption using a wild population of two sympatrically occurring host species: the great reed warbler (Acrocephalus arundinaceus) and reed warbler (A. scirpaceus). Using colour spectrophotometry, egg shell dynamometry and egg size measurements, we studied egg morphologies of cuckoos parasitizing these two hosts. In spite of observing clear differences between host egg phenotypes, we found no clear differences in cuckoo egg morphologies. Interestingly, although chromatically cuckoo eggs were more similar to reed warbler eggs, after taking into account achromatic differences, cuckoo eggs seemed to be equally similar to both host species. We hypothesize that such pattern may represent an initial stage of an averaging strategy of cuckoos, that – instead of specializing for specific hosts or exploiting only one host – adapt to multiple hosts.  相似文献   

11.
Selection due to cuckoo parasitism is responsible for the evolution of anti-parasitism defenses in hosts. Different host species breeding sympatrically with a single parasitic cuckoo may evolve different strategies to reduce the risk of counter cuckoo parasitism, resulting in different interactions between cuckoos and hosts in areas of sympatry. Here, we studied the coevolutionary interactions between Himalayan cuckoos Cuculus saturatus and 2 sympatric and closely related potential hosts belonging to the family Pycnonotidae, the brown-breasted bulbul Pycnonotus xanthorrhous and the collared finchbill Spizixos semitorques. We investigated parasitism rates and nest-site selection (nest height, nest cover, human disturbance, perch height, forest distance, and degree of concealment) related to parasitism risk, nest defense against a cuckoo dummy, and egg rejection against cuckoo model eggs. Bulbuls used specific nest sites that were further away from forests than those of finchbills, and they behaved more aggressively toward cuckoos than finchbills. In contrast, bulbuls possessed moderate egg rejection ability, whereas the finchbill rejected 100% of cuckoo model eggs. We suggest that selection of a nest site away from forests by the bulbul explains the absence of parasitism by Himalayan cuckoos. We suggest that these interspecific differences in nest-site selection and nest defense indicate alternative responses to selection due to cuckoos.  相似文献   

12.
Brood parasites dramatically reduce the reproductive successof their hosts, which therefore have developed defenses againstbrood parasites. The first line of defense is protecting thenest against adult parasites. When the parasite has successfullyparasitized a host nest, some hosts are able to recognize andreject the eggs of the brood parasite, which constitutes the secondline of defense. Both defense tactics are costly and would be counteractedby brood parasites. While a failure in nest defense implies successfulparasitism and therefore great reduction of reproductive successof hosts, a host that recognizes parasitic eggs has the opportunityto reduce the effect of parasitism by removing the parasiticegg. We hypothesized that, when nest defense is counteractedby the brood parasite, hosts that recognize cuckoo eggs shoulddefend their nests at a lower level than nonrecognizers becausethe former also recognize adult cuckoos. Magpie (Pica pica) hoststhat rejected model eggs of the brood parasitic great spottedcuckoo (Clamator glandarius) showed lower levels of nest defensewhen exposed to a great spotted cuckoo than when exposed toa nest predator (a carrion crow Corvus corone). Moreover, magpiesrejecting cuckoo eggs showed lower levels of nest defense againstgreat spotted cuckoos than nonrecognizer magpies, whereas differencesin levels of defense disappeared when exposed to a carrion crow.These results suggest that hosts specialize in antiparasitedefense and that different kinds of defense are antagonistically expressed.We suggest that nest-defense mechanisms are ancestral, whereasegg recognition and rejection is a subsequent stage in the coevolutionaryprocess. However, host recognition ability will not be expressedwhen brood parasites break this second line of defense.  相似文献   

13.
Adult great spotted cuckoos Clamator glandarius damage the eggsof their magpie Pica pica host without removing them from thenest or eating them but by producing the death of the embryo.Observations as well as experiments were used to test severalpredictions of two different possibilities: great spotted cuckooegg-damaging behavior is a parasitic tactic resulting froma direct selection process (the adaptation hypothesis), oregg damage is caused by thick-shelled cuckoo eggs which evolvedto avoid breakage during rapid laying (the nonadaptation hypothesis).Previously, we provided experimental evidence that egg damageincreased the breeding success of cuckoos when they laid lateduring the laying sequence of the magpie. However, when theylaid early, egg-damaging behavior did not increase cuckoo breedingsuccess, contrary to the adaptation hypothesis. In an experimental study, when we simulated laying behavior by the great spottedcuckoo, we found that (1) the number of damaged magpie eggswas significantly lower than in natural parasitism, and (2)whereas in the experimental manipulations the number of damagedeggs did not depend on the number of magpie eggs, in natural parasitism, the number of damaged eggs increased with clutchsize of the magpie. These results support the predictions ofthe adaptation hypothesis, implying that egg damage is notan incidental consequence of rapid egg laying, but an adaptation.  相似文献   

14.
The common cuckoo Cuculus canorus is a brood parasite that utilizes many host species. These have evolved defense against parasitism to reject cuckoo eggs that look unlike their own and some cuckoos have evolved egg mimicry to counter this defense. Egg phenotype indeed plays a key role for both the cuckoo and its hosts to successfully reproduce. It has been argued that cuckoos should parasitize host nests where egg phenotype matches because this makes parasitism more successful. Details of the cuckoo’s parasitic behavior, however, largely remains unknown if they really parasitize hosts depending on “egg matching”. In this paper, we model a time sequence of parasitic events in which a cuckoo finds host nests and decides to parasitize them or not in the presence of egg polymorphism. We evaluate which strategy is optimal: (1) opportunistic parasitism where cuckoos parasitize hosts irrespective of the phenotype, or (2) non-opportunistic parasitism where cuckoos parasitize hosts where egg phenotype matches. The analysis showed that either of the two strategies can be optimal. Factors not considered in the model, e.g., ecological and evolutionary changes both in the cuckoo and the host side, are discussed to explain apparent contrasts observed in some cuckoo–host interactions.  相似文献   

15.
Hosts may use two different strategies to ameliorate negative effects of a given parasite burden: resistance or tolerance. Although both resistance and tolerance of parasitism should evolve as a consequence of selection pressures owing to parasitism, the study of evolutionary patterns of tolerance has traditionally been neglected by animal biologists. Here, we explore geographical covariation between tolerance of magpies (Pica pica) and brood parasitism by the great spotted cuckoo (Clamator glandarius) in nine different sympatric populations. We estimated tolerance as the slope of the regression of number of magpie fledglings (i.e. host fitness) on number of cuckoo eggs laid in non-depredated nests (which broadly equals parasite burden). We also estimated prevalence of parasitism and level of host resistance (i.e. rejection rates of mimetic model eggs) in these nine populations. In accordance with the hypothetical role of tolerance in the coevolutionary process between magpies and cuckoos we found geographical variation in tolerance estimates that positively covaried with prevalence of parasitism. Levels of resistance and tolerance were not associated, possibly suggesting the lack of a trade-off between the two kinds of defences against great spotted cuckoo parasitism for magpies. We discuss the results in the framework of a mosaic of coevolutionary interactions along the geographical distribution of magpies and great spotted cuckoos for which we found evidence that tolerance plays a major role.  相似文献   

16.
The Iberian azure-winged magpie Cyanopica cyanus shows a remarkable ability to discriminate against great spotted cuckoo Clamator glandarius eggs. Here, I studied whether egg recognition in this species could be a derived feature resulting from intra-specific brood parasitism. Azure-winged magpies showed a very high level of discrimination and rejection of great spotted cuckoo models (73.7%), and of conspecific eggs (42.8%), even when no evidence of great spotted cuckoo or conspecific brood parasitism has been found in the population. Azure-winged magpie discriminated more readily than magpies, the current favourite host of the great spotted cuckoo. The high rejection rate of conspecific eggs by the azure-winged magpie suggests that it is quite possible that egg discrimination in this species evolved in response to conspecific brood parasitism rather than to cuckoo parasitism.  相似文献   

17.
Brood parasite – host systems continue to offer insights into species coevolution. A notable system is the redstart Phoenicurus phoenicurus parasitized by the ‘redstart‐cuckoo’ Cuculus canorus gens. Redstarts are the only regular cuckoo hosts that breed in cavities, which challenges adult cuckoos in egg laying and cuckoo chicks in host eviction. We investigated parasitism in this system and found high overall parasitism rates (31.1% of 360 redstart nests), but also that only 33.1% of parasitism events (49 of 148 eggs) were successful in laying eggs into redstart nest cups. The majority of cuckoo eggs were mislaid and found on the rim of the nest; outside the nest cup. All available evidence suggests these eggs were not ejected by hosts. The effective parasitism rate was therefore only 12.8% of redstart nests. Redstarts responded to natural parasitism by deserting their nests in 13.0% of cases, compared to desertion rates of 2.8% for non‐parasitized nests. Our egg parasitism experiments found low rates (12.2%) of rejection of artificial non‐mimetic cuckoo eggs. Artificial mimetic and real cuckoo eggs added to nests were rejected at even lower rates, and were always rejected via desertion. Under natural conditions, only 21 cuckoo chicks fledged of 150 cuckoo eggs laid. Adding to this low success, is that cuckoo chicks are sometimes unable to evict all host young, and were more likely to die as a result compared to cuckoo chicks reared alone. This low success seems to be mainly due to the cavity nesting strategy of the redstart which is a challenging obstacle for the cuckoo. The redstart‐cuckoo system appears to be a fruitful model system and we suggest much more emphasis should be placed on frontline defences such as nest site selection strategies when investigating brood parasite–host coevolution.  相似文献   

18.
Parasitic cuckoos lay their eggs in nests of host species. Rejection of cuckoo eggs by hosts has led to the evolution of egg mimicry by cuckoos, whereby their eggs mimic the colour and pattern of their host eggs to avoid egg recognition and rejection. There is also evidence of mimicry in egg size in some cuckoo–host systems, but currently it is unknown whether cuckoos can also mimic the egg shape of their hosts. In this study, we test whether there is evidence of mimicry in egg form (shape and size) in three species of Australian cuckoos: the fan‐tailed cuckoo Cacomantis flabelliformis, which exploits dome nesting hosts, the brush cuckoo Cacomantis variolosus, which exploits both dome and cup nesting hosts, and the pallid cuckoo Cuculus pallidus, which exploits cup nesting hosts. We found evidence of size mimicry and, for the first time, evidence of egg shape mimicry in two Australian cuckoo species (pallid cuckoo and brush cuckoo). Moreover, cuckoo–host egg similarity was higher for hosts with open nests than for hosts with closed nests. This finding fits well with theory, as it has been suggested that hosts with closed nests have more difficulty recognizing parasitic eggs than open nests, have lower rejection rates and thus exert lower selection for mimicry in cuckoos. This is the first evidence of mimicry in egg shape in a cuckoo–host system, suggesting that mimicry at different levels (size, shape, colour pattern) is evolving in concert. We also confirm the existence of egg size mimicry in cuckoo–host systems.  相似文献   

19.
The rate of nest parasitism is a product of two interacting phenomena: host selection by cuckoos and defence by hosts. In our study area the rate of nest parasitism by cuckoos is significantly lower in the great reed warbler (GRW; Acrocephalus arundinaceus) than in the reed warbler (RW; A. scirpaceus), even though they breed in the same habitat and their reproductive biology is similar. We hypothesized that the difference in the proportion of parasitized nests may reflect a narrow selection of host by cuckoos (they prefer RW nests) or/and the relatively better alien egg discrimination in the GRW. In the egg discrimination experiment the GRW rejected the higher proportion of alien eggs than the RW. However, in both species the discriminative ability considerably varied in time, both within the day and within the breeding cycle. A logistic regression model suggests that the GRW would be a frequent host if only nest parasites could exploit the period of its lowest sensitivity to alien eggs. We conclude that the relatively low rate of nest parasitism in the GRW may reflect both its good discriminative ability and the low number of cuckoos that are specialized in dumping eggs to nests of this warbler. The adaptation of cuckoos to the particular host species may involve not only production of mimetic eggs, but also adjusting activity to temporal changes in sensitivity to alien eggs in the host.  相似文献   

20.
One of the most important defensive host traits against brood parasitism is the detection and ejection of parasitic eggs from their nests. Here, we explore the possible role of olfaction in this defensive behaviour. We performed egg‐recognition tests in magpie Pica pica nests with model eggs resembling those of parasitic great spotted cuckoos Clamator glandarius. In one of the experiment, experimental model eggs were exposed to strong or moderate smell of tobacco smoke, whereas those of a third group (control) were cleaned with disinfecting wipes and kept in boxes containing odourless cotton. Results showed that model eggs with strong tobacco scent were more frequently ejected compared with control ones. In another experiment, models were smeared with scents from cloacal wash from magpies (control), cloacal wash or uropygial secretions from cuckoos, or human scents. This experiment resulted in a statistically significant effect of treatment in unparasitized magpie nests in which control model eggs handled by humans were more often rejected. These results provide the first evidence that hosts of brood parasites use their olfactory ability to detect and eject foreign eggs from their nests. These findings may have important consequences for handling procedures of experimental eggs used in egg‐recognition tests, in addition to our understanding of interactions between brood parasites and their hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号