首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While both predator body size and prey refuge provided by habitat structure have been established as major factors influencing the functional response (per capita consumption rate as a function of prey density), potential interactions between these factors have rarely been explored. Using a crab predator (Panopeus herbstii) – mussel prey (Brachidontes exustus) system, we examined the allometric scaling of the functional response in oyster (Crassostrea virginica) reef habitat, where crevices within oyster clusters provide mussels refuge from predation. A field survey of mussel distribution showed that mussels attach closer to the cluster periphery at high mussel density, indicating the potential for saturation of the refuge. In functional response experiments, the consumption rate of large crabs was depressed at low prey density relative to small crabs, while at high prey density the reverse was true. Specifically, the attack rate coefficient and handling time both decreased non‐linearly with crab size. An additional manipulation revealed that at low prey densities, the ability of large crabs to maneuver their claws and bodies to extract mussels from crevices was inhibited relative to small crabs by the structured habitat, reducing their attack rate. At high prey densities, crevices were saturated, forcing mussels to the edge of clusters where crabs were only limited by handling time. Our study illuminates a potentially general mechanism where the quality of the prey refuge provided by habitat structure is dependent on the relative size of the predator. Thus anthropogenic influences that alter the natural crab size distribution or degrade reef habitat structure could threaten the long‐term stability of the crab –mussel interaction in reefs.  相似文献   

2.
In the western Baltic Sea, the highly competitive blue mussel Mytilus edulis tends to monopolize shallow water hard substrata. In many habitats, mussel dominance is mainly controlled by the generalist predator Carcinus maenas. These predator-prey interactions seem to be affected by mussel size (relative to crab size) and mussel epibionts.There is a clear relationship between prey size and predator size as suggested by the optimal foraging theory: Each crab size class preferentially preys on a certain mussel size class. Preferred prey size increases with crab size.Epibionts on Mytilus, however, influence this simple pattern of feeding preferences by crabs. When offered similarly sized mussels, crabs prefer Balanus-fouled mussels over clean mussels. There is, however, a hierarchy of factors: the influence of attractive epibiotic barnacles is weaker than the factor ‘mussel size’. Testing small mussels against large mussels, presence or absence of epibiotic barnacles does not significantly alter preferences caused by mussel size. Balanus enhanced crab predation on mussels in two ways: Additional food gain and, probably more important, improvement in handling of the prey. The latter effect is illustrated by the fact that artificial barnacle mimics increased crab predation on mussels to the same extent as do live barnacles.We conclude that crab predation preferences follows the optimal foraging model when prey belong to different size classes, whereas within size classes crab preferences is controlled by epibionts.  相似文献   

3.
Predators often have nonconsumptive effects (NCEs) on prey. For example, upon detection of predator cues, prey can reduce feeding activities to hamper being detected by predators. Previous research showed that waterborne chemical cues from green crabs (Carcinus maenas, predator) limit the dogwhelk (Nucella lapillus, prey) consumption of barnacles regardless of dogwhelk density, even though individual predation risk for dogwhelks decreases with conspecific density. Such NCEs might disappear with dogwhelk density if dogwhelks feed on mussels, as mussel stands constitute better antipredator refuges than barnacle stands. Through a laboratory experiment, we effectively found that crab chemical cues limit the per-capita consumption of mussels by dogwhelks at low dogwhelk density but not at high density. The combination of tactile and chemical cues from crabs, however, limited the dogwhelk consumption of mussels at both dogwhelk densities. The occurrence of such NCEs at both dogwhelk densities could have resulted from tactile cues indicating a stronger predation risk than chemical cues alone. Overall, the present study reinforces the notions that prey evaluate conspecific density when assessing predation risk and that predator cue type affects their perception of risk.  相似文献   

4.
In predator–prey relationships such as those between crabs and their bivalve prey, interference competition is a topic of intense investigation as it can have profound consequences on the dynamics of both predator and prey populations. However in laboratory experiments – also those on crab–bivalve systems – workers never adequately disentangled interference competition from exploitative competition, as prey depletion was never compensated. Hitherto, experimental studies on crab–bivalve systems lack direct behavioural observations and have provided only indirect and thus inconclusive evidence of interference competition. We studied interference competition in adult male shore crabs Carcinus maenas that foraged on blue mussels Mytilus edulis. We developed a novel type of experimental tank to replenish each consumed mussel, and thus to keep prey levels constant. We conducted two experiments in which we varied number of crabs (1, 2, 4) and number of mussels (first experiment: 4, 8, 16, 32; second experiment: 8, 32, 128) and directly observed the foraging behaviour of crabs (foraging area=0.25 m2). In the first experiment, feeding rates decreased with increasing crab density only at mussel density 16 because both search time and time spent in agonistic interactions increased. At other mussel densities, variation in crab density did not affect feeding rates, possibly because of low statistical power and the narrow range of mussel densities offered. In the second experiment feeding rates decreased with increasing crab density because crabs spent more time in agonistic interactions and handling their prey. Feeding rates increased with increasing mussel density. Overall, crabs spent on average 14–18% of their foraging time in agonistic behaviours, while on three out of 64 occasions feeding rates decreased because mussels were stolen (kleptoparasitism). Concluding, we have shown that interference competition occurs in absence of prey depletion, while conducting direct behavioural observations aid to identify the behavioural processes that underlie interference competition.  相似文献   

5.
The effects of competitor pressure and prey odor on foraging behavior of the rock crab, Cancer irroratus (Say), were investigated. The Jonah crab, Cancer borealis (Stimpson), was chosen as the interspecific competitor because it shares resources with C. irroratus. Four treatments were tested for their effect on foraging: the presence or absence of a competitor and two types of prey odor; body odor (living mussel) and tissue extract (dead mussel tissue). The presence of Jonah crabs did not influence location time, search time, prey size selected, or handling time of the rock crabs. However, rock crabs responded differently to the presence of body odor and tissue extract cues. The presence of extract odor decreased the time to locate prey while increasing the number of prey manipulated and prey size selected. When prey body odor was present, rock crabs displayed less investigative behaviors than in the presence of extract odor, illustrated by reduced location time. Extract odor provided a stronger and more attractive cue than body odor, but increased prey manipulation and search time. Extract odor induced increases in manipulation and searching for prey but canceled out the benefits of decreased location time, resulting in crabs from both treatments displaying similar search times. These elevated behaviors may be associated with foraging for injured and cracked prey or may indicate an area of conspecific feeding.  相似文献   

6.
Predators can affect prey populations and, via trophic cascades, predators can indirectly impact resource populations (2 trophic levels below the predator) through consumption of prey (density-mediated indirect effects; DMIEs) and by inducing predator-avoidance behavior in prey (trait-mediated indirect effects; TMIEs). Prey often employ multiple predator-avoidance behaviors, such as dispersal or reduced foraging activity, but estimates of TMIEs are usually on individual behaviors. We assessed direct and indirect predator effects in a mesocosm experiment using a marine food chain consisting of a predator (toadfish – Opsanus tau), prey (mud crab - Panopeus herbstii) and resource (ribbed mussel – Geukensia demissa). We measured dispersal and foraging activity of prey separately by manipulating both the presence and absence of the predator, and whether prey could or could not disperse into a predator-free area. Consumption of prey was 9 times greater when prey could not disperse, probably because mesocosm boundaries increased predator capture success. Although predator presence did not significantly affect the number of crabs that emigrated, the presence of a predator decreased resource consumption by prey, which resulted in fewer resources consumed for each prey that emigrated in the presence of a predator, and reduced the overall TMIE. When prey were unable to disperse, TMIEs on mussel survival were 3 times higher than the DMIEs. When prey were allowed to disperse, the TMIEs on resource survival increased to 11-times the DMIEs. We found that restricting the ability of prey to disperse, or focusing on only one predator-avoidance behavior, may be underestimating TMIEs. Our results indicate that the relative contribution of behavior and consumption in food chain dynamics will depend on which predator-avoidance behaviors are allowed to occur and measured.  相似文献   

7.
Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.  相似文献   

8.
While the recent inclusion of parasites into food‐web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasite transmission in eight topological food webs representing marine and freshwater ecosystems. Within each food web, we examined links in the typical predator–prey sub web as well as the predator–parasite sub web, i.e. the quadrant of the food web indicating which predators eat parasites. Most predator– parasite links represented ‘concomitant predation’ (consumption and death of a parasite along with the prey/host; 58–72%), followed by ‘trophic transmission’ (predator feeds on infected prey and becomes infected; 8–32%) and predation on free‐living parasite life‐cycle stages (4–30%). Parasite life‐cycle stages had, on average, between 4.2 and 14.2 predators. Among the food webs, as predator richness increased, the number of links exploited by trophically transmitted parasites increased at about the same rate as did the number of links where these stages serve as prey. On the whole, our analyses suggest that predation on parasites has important consequences for both predators and parasites, and food web structure. Because our analysis is solely based on topological webs, determining the strength of these interactions is a promising avenue for future research.  相似文献   

9.
Predators in nature include an array of prey types in their diet, and often select certain types over others. We examined (i) prey selection by sea stars (Asterias vulgaris) and rock crabs (Cancer irroratus) when offered two prey types, juvenile sea scallops (Placopecten magellanicus) and blue mussels (Mytilus edulis), and (ii) the effect of prey density on predation, prey selection, and component behaviours. We quantified predation rates, behavioural components (proportion of time spent searching for prey, encounter probabilities) and various prey characteristics (shell strength, energy content per prey, handling time per prey) to identify mechanisms underlying predation patterns and to assess the contribution of active and passive prey selection to observed selection of prey. Sea stars strongly selected mussels over scallops, resulting from both active and passive selection. Active selection was associated with the probability of attack upon encounter; it was higher on mussels than on scallops. The probability of capture upon attack, associated with passive selection, was higher for mussels than for scallops, since mussels can not swim to escape predators. Sea stars consumed few scallops when mussels were present, and so did not have a functional response on scallops (the target prey). Rock crabs exhibited prey switching: they selected mussels when scallop density was very low, did not select a certain prey type when scallop density was intermediate, and selected scallops when scallop density was high relative to mussel density. The interplay between encounter rate (associated with passive selection) and probability of consumption upon capture (associated with both active and passive selection) explained observed selection by crabs. Scallops were encountered by crabs relatively more often and/or mussels less often than expected from random movements of animals at all scallop densities. However, the probability of consumption varied with scallop density: it was lower for scallops than mussels at low and intermediate scallop densities, but tended to be higher for scallops than mussels at high scallop densities. When mussels were absent, crabs did not have a functional response on scallops, but rather were at the plateau of the response. When mussels were present with scallops at relatively low density, crabs exhibited a type II functional response on scallops. Our results have implications for the provision of protective refuges for species of interest (i.e., scallops) released onto the sea bed, such as in population enhancement operations and bottom aquaculture.  相似文献   

10.
Parasite modification of host behavior is common, and the literature is dominated by demonstrations of enhanced predation on parasitized prey resulting in transmission of parasites to their next host. We present a case in which predation on parasitized prey is reduced. Despite theoretical modeling suggesting that this phenomenon should be common, it has been reported in only a few host–parasite–predator systems. Using a system of gregarine endosymbionts in host mosquitoes, we designed experiments to compare the vulnerability of parasitized and unparasitized mosquito larvae to predation by obligate predatory mosquito larvae and then compared behavioral features known to change in the presence of predatory cues. We exposed Aedes triseriatus larvae to the parasite Ascogregarina barretti and the predator Toxohrynchites rutilus and assessed larval mortality rate under each treatment condition. Further, we assessed behavioral differences in larvae due to infection and predation stimuli by recording larvae and scoring behaviors and positions within microcosms. Infection with gregarines reduced cohort mortality in the presence of the predator, but the parasite did not affect mortality alone. Further, infection by parasites altered behavior such that infected hosts thrashed less frequently than uninfected hosts and were found more frequently on or in a refuge within the microcosm. By reducing predation on their host, gregarines may be acting as mutualists in the presence of predation on their hosts. These results illustrate a higher‐order interaction, in which a relationship between a species pair (host–endosymbiont or predator–prey) is altered by the presence of a third species.  相似文献   

11.
A common signature of marine invasions worldwide is a significant loss of parasites (= parasite escape) in non-native host populations, which may confer a release from some of the harmful effects of parasitism (e.g., castration, energy extraction, immune activation, behavioral manipulation) and possibly enhance the success of non-indigenous species. In eastern North America, the notorious invader Carcinus maenas (European green crab) has escaped more than two-thirds its native parasite load. However, one of its parasites, a trematode (Microphallus similis), can be highly prevalent in the non-native region; yet little is known about its potential impacts. We employed a series of laboratory experiments to determine whether and how M. similis infection intensity influences C. maenas, focusing on physiological assays of body mass index, energy storage, and immune activation, as well as behavioral analyses of foraging, shelter utilization, and conspicuousness. We found little evidence for enduring physiological or behavioral impacts four weeks after experimental infection, with the exception of mussel handling time which positively correlated with cyst intensity. However, we did find evidence for a short-term effect of M. similis infection during early stages of infection (soon after cercarial penetration) via a significant drop in circulating immune cells, and a significant increase in the crabs’ righting response time. Considering M. similis is the only common parasite infecting C. maenas in eastern North America, our results for minimal lasting effects of the trematode on the crab’s physiology and behavior may help explain the crab’s continued prominence as a strong predator and competitor in the region.  相似文献   

12.
The expression of prey antipredator defenses is often related to ambient consumer pressure, and prey express greater defenses under intense consumer pressure. Predation is generally greater at lower latitudes, and antipredator defenses often display a biogeographic pattern. Predation pressure may also vary significantly between habitats within latitudes, making biogeographic patterns difficult to distinguish. Furthermore, invasive predators may also influence the expression of prey defenses in ecological time. The purpose of this study was to determine how these factors influence the strength of antipredator responses. To assess patterns in prey antipredator defenses based upon geographic range (north vs. south), habitat type (wave-protected vs. wave-exposed shores), and invasive predators, we examined how native rock (Cancer irroratus) and invasive green (Carcinus maenas) crab predators influence the behavioral and morphological defenses of dogwhelk (Nucella lapillus) prey from habitats that differ in wave exposure across an ~230 km range within the Gulf of Maine. The expression of behavioral and morphological antipredatory responses varied according to wave exposure, geographic location, and predator species. Dogwhelks from areas with an established history with green crabs exhibited the largest behavioral and morphological antipredator responses to green crabs. Dogwhelk behavioral responses to rock crabs did not vary between habitats or geographic regions, although morphological responses were greater further south where predation pressure was greatest. These findings suggest that dogwhelk responses to invasive and native predators vary according to geographic location and habitat, and are strongly affected by ambient predation pressure due to the invasion history of an exotic predator.  相似文献   

13.
Predator-prey relationships between the panopeid crab, Dyspanopeus sayi, and the mytilid, Musculista senhousia, were investigated. Through laboratory experiments, prey-handling behavior, prey size selection, predator foraging behavior and preferences for two types of prey (M. senhousia and the Manila clam Ruditapes philippinarum) were assessed. Handling time differed significantly with respect to the three prey sizes offered (small: 15.0-20.0 mm shell length, SL; medium: 20.1-25.0 mm SL; and large: 25.1-30.0 mm SL); mud crabs were more efficient in predating medium-small than large prey. Although differences in prey profitability were not evident, D. sayi exhibited a marked reluctance to feed on larger-sized prey whilst smaller, more easily predated mussels were available. Size selection may be the result of a mechanical process in which encountered prey are attacked but rejected if they remain unbroken after a certain number of opening attempts. D. sayi exhibited inverse density-dependent foraging. A significant higher mortality of prey was evident at low prey density. Thus, at low predator density, the D. sayi-M. senhousia interaction was a destabilizing type II functional response. Interference responses affected the magnitude of predation intensity by D. sayi on M. senhousia, since as the density of foraging crabs increased, their foraging success fell. At high density (4 crabs tank−1), crabs engaged in a high amount of agonistic activity when encountering a conspecific specimen, greatly diminished prey mortality. Finally, presenting two types of prey, Manila clam juveniles were poorly predated by mud crabs, which focused their predation mostly on M. senhousia. It is hypothesized that, when more accessible prey is available, mud crabs will have a minimal predatory impact on commercial R. philippinarum juvenile stocks.  相似文献   

14.
Growing evidence suggests that microbiomes have been shaping the evolutionary pathways of macroorganisms for millennia and that these tiny symbionts can influence, and possibly even control, species interactions like host–parasite relationships. Yet, while studies have investigated host–parasites and microbiomes separately, little has been done to understand all three groups synergistically. Here, we collected infected and uninfected Eurypanopeus depressus crab hosts from a coastal North Carolina oyster reef three times over 4 months. Infected crabs demonstrated an external stage of the rhizocephalan parasite, Loxothylacus panopaei. Community analyses revealed that microbial richness and diversity were significantly different among tissue types (uninfected crab, infected crab, parasite externae and parasite larvae) and over time (summer and fall). Specifically, the microbial communities from parasite externae and larvae had similar microbiomes that were consistent through time. Infected crabs demonstrated microbial communities spanning those of their host and parasite, while uninfected crabs showed more distinctive communities with greater variability over time. Microbial communities were also found to be indicators of early-stage infections. Resolving the microbial community composition of a host and its parasite is an important step in understanding the microbiome's role in the host–parasite relationship and determining how this tripartite relationship impacts coevolutionary processes.  相似文献   

15.
The infection effects of the parasitic digenean trematode on the body weight and reproductive success of the sand-bubbler crab were examined. Gynaecotyla squatarolae (Trematoda: Microphallidae) infects the body cavity of Scopimera globosa (Decapoda: Scopimeridae) and uses the crab as its second intermediate host. The parasites infected all reproductive crabs examined to varying degrees. Larger crabs of both sexes had more parasites than smaller ones, probably because body size reflects age, and older crabs had a longer period of exposure to infection. Males had more parasites than females, probably because of sexual difference in acting time on the surface. Ovigerous females stay in closed burrows and do not act on the surface during incubation, and so have less chance of infection than males. The quantity of infecting parasites did not explain variations in either body weight or reproductive success of individual crabs in a field experiment. The life history of this parasite, relative body size of the crabs, and cost and the possible benefit of manipulation for the parasite may explain these results.  相似文献   

16.
The crab Paralomis verrilli in the waters of southeast Sakhalin is infected by the parasitic rhizocephalan barnacle Briarosaccus callosus. The prevalence of parasitic infection was on the average 4.36% (6.29% for females, 3.28% for males) and varied between samples from none up to 14.9%. The degree of prevalence was not related to the average carapace width and the sex ratio of crabs in samples. Sterilization of female P. verrilli was caused by the B. callosus infestation or its consequences. No more than two parasite externae per crab were found. Crabs with two externae made up 5.6% of all infected specimens. The infestation of crab hosts with two B. callosus externae negatively influenced the growth of the externae. A positive relationship was found between the width of the crab carapace and the length of the parasitic externae. The survival rate of P. verrilli with either one or two parasite B. callosus externae did not differ substantially. The proportion of crabs with externae and those with “scars” (12.2% in our case) can be taken as the index of survival of the parasitized crabs.  相似文献   

17.
Large invasive predators like the king crab, Paralithodes camtschaticus, deserve particular attention due to their potential for catastrophic ecological impact on recipient communities. Conspicuous, epibenthic prey species, such as the slow growing commercial scallop Chlamys islandica, are particularly exposed to the risk of local extinction. A research program integrating experiments and field monitoring is attempting to predict and track the impact of invasive king crab on scallop beds and associated fauna along the north Norwegian coast. The claw gape of the crab shows no limitations in handling the flat-bodied scallop. However, the potential impact of the crab on scallop may depend on the availability of other calcified prey associated with scallop beds, such as the sea star, sea urchin, and blue mussel, all species recorded in the diet of P. camtschaticus. To address this issue, a laboratory experiment on foraging behaviour of P. camtschaticus was conducted. The experimental results show that all size classes of red king crab prefer scallops, but small juveniles and medium sized crabs demonstrate active selection for starfish (Asterias rubens) that equals or surpasses the electivity of the large crab. The selection of sea urchin (Strongylocentrotus droebachiensis) and blue mussel (Mytilus edulis) is slightly positive or neutral for the three crab size classes. These results suggest that scallop beds with a rich associated fauna are less vulnerable to red king crabs predation and possibly more resilient than beds with few associated species. Also, crab size distribution is likely relevant for invasion impact, with increasing abundance of small and medium sized crabs being detrimental for alternative calcified prey associated with scallop beds. Successive stages of crab invasion will see an acceleration of scallop mortality rates associated with (i) decreasing availability of alternative prey, due to protracted predation pressure intensified by recruitment of juvenile crabs, and (ii) increased number of large crabs. Estimates of crab density and intake rates suggest that the accelerated loss rates will eventually endanger scallop beds persistence.  相似文献   

18.

The European green crab (Carcinus maenas) is invasive on the West coast of North America, but the ecological consequences of this invasion remain poorly understood. Comparative functional response analysis has arisen as a method of elucidating ecological consequences of invasive species by comparing the impact of these species to native analogues. Through comparative functional response experiments of green crabs and native red rock crabs (Cancer productus) we found that green crab predation increased asymptotically (Type II functional response) when fed increasing densities of Pacific oysters (Magallana gigas), while red rock crab predation displayed a sigmoidal (Type III) response. At high oyster densities red rock crabs consume more Pacific oysters than green crabs do, due to their reduced handling time, though green crabs consume more Pacific oysters relative to their size than red rock crabs. However, compared to red rock crabs, green crabs consume more oysters at low prey densities, which implies that they have a larger, potentially destabilizing impact on low densities of Pacific oysters. As green crabs continue to spread across the West coast of North America, Pacific oysters will face increased predation pressure. Our results show the advantage of using functional response analysis to compare density dependent predation between an invasive species and a native species to predict the ecological consequences of invasions.

  相似文献   

19.
Optimal Diet Theory suggests that individuals make foraging decisions that maximise net energy intake. Many studies provide qualitative support for this, but factors such as digestive constraints, learning, predation-risk and competition can influence foraging behaviour and lead to departures from quantitative predictions. We examined the effects of intraspecific competition within a classic model of optimal diet – the common shore crab, Carcinus maenas, feeding on the mussel, Mytilus edulis. Unexpectedly, we found that breaking time (Tb), eating time (Te), and handling time (Th) all decreased significantly in the presence of a conspecific. Reduced handling time in the presence of a competitor resulted in an increased rate of energy intake, raising the question of why crabs do not always feed in such a way. We suggest that the costs of decreased shell breaking time may be increased risk of claw damage and that crabs may be trading-off the potential loss of food to a competitor with the potential to damage their claw whilst breaking the shell more rapidly. It is well documented that prey-size selection by crabs is influenced by both the risk of claw damage and competition. However, our results are the first to demonstrate similar effects on prey handling times. We suggest that crabs maximise their long-term rate of energy intake at a scale far greater than individual foraging events and that in order to minimise claw damage, they typically break shells at a rate below their maximum. In the presence of a competitor, crabs appear to become more risk-prone and handle their food more rapidly, minimising the risk of kleptoparasitism.  相似文献   

20.
Bopyrid isopods and rhizocephalan barnacles are obligate parasite crustaceans which harm their decapod hosts. However, to the best of our knowledge, studies have not compared which of these parasites has a greater parasitic effect on its hosts. Here, the parasitic effect of the bopyrid isopod, Allokepon hendersoni, and an unidentified sacculinid rhizocephalan species, infesting the same population of portunid crabs, Charybdis bimaculata, was investigated and compared for the first time. Samples were collected from the bycatch of a trawl fishery in Tosa Bay, Japan. A total of 2601 crabs were collected, of which 14 (0.55%) were parasitized by the bopyrid and 21 (0.82%) by the rhizocephalan. One of the two female crabs parasitized by the bopyrid was ovigerous (with much fewer eggs than unparasitized females). No ovigerous crab was found from the eight females parasitized by the rhizocephalan. Because only two female crabs were parasitized by the bopyrid, the following analyses were made using the male crabs. Both parasites reduced the wet weight (crab condition) and the cheliped size (secondary growth) of C. bimaculata, but the impact of the parasitism did not differ between the parasite species. The size of the abdominal flap of male hosts was reduced by the bopyrid infestation; however, rhizocephalan infestation caused enlargement of the abdominal flap, which is an indication of feminization. The present study provides information on how the effect of these two parasitic castrators on the same host crab varies. A moderate decrease in crab condition and cheliped development was common among the parasites, suggesting that the degree of impact might be favorable for the survival of the two parasites species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号