首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functional aspects of biodiversity were investigated in a lowland tropical rainforest in French Guyana (5°2′N, annual precipitation 2200 mm). We assessed leaf δ15N as a presumptive indicator of symbiotic N2 fixation, and leaf and wood cellulose δ13C as an indicator of leaf intrinsic water-use efficiency (CO2 assimilation rate/leaf conductance for water vapour) in dominant trees of 21 species selected for their representativeness in the forest cover, their ecological strategy (pioneers or late successional stage species, shade tolerance) or their potential ability for N2 fixation. Similar measurements were made in trees of native species growing in a nearby plantation after severe perturbation (clear cutting, mechanical soil disturbance). Bulk soil δ15N was spatially quite uniform in the forest (range 3–5‰), whereas average leaf δ15N ranged from −0.3‰ to 3.5‰ in the different species. Three species only, Diplotropis purpurea, Recordoxylon speciosum (Fabaceae), and Sclerolobium melinonii (Caesalpiniaceae), had root bacterial nodules, which was also associated with leaf N concentrations higher than 20 mg g−1. Although nodulated trees displayed significantly lower leaf δ15N values than non-nodulated trees, leaf δ15N did not prove a straightforward indicator of symbiotic fixation, since there was a clear overlap of δ15N values for nodulated and non-nodulated species at the lower end of the δ15N range. Perturbation did not markedly affect the difference δ15Nsoil δ15Nleaf, and thus the isotopic data provide no evidence of an alteration in the different N acquisition patterns. Extremely large interspecific differences in sunlit leaf δ13C were observed in the forest (average values from −31.4 to −26.7‰), corresponding to intrinsic water-use efficiencies (ratio CO2 assimilation rate/leaf conductance for water vapour) varying over a threefold range. Wood cellulose δ13C was positively related to total leaf δ13C, the former values being 2–3‰ higher than the latter ones. Leaf δ13C was not related to leaf δ15N at either intraspecific or interspecific levels. δ13C of sunlit leaves was highest in shade hemitolerant emergent species and was lower in heliophilic, but also in shade-tolerant species. For a given species, leaf δ13C did not differ between the pristine forest and the disturbed plantation conditions. Our results are not in accord with the concept of existence of functional types of species characterized by common suites of traits underlying niche differentiation; rather, they support the hypothesis that each trait leads to a separate grouping of species. Received: 18 August 1997 / Accepted: 14 April 1998  相似文献   

2.
The use of stable carbon isotopes as a means of studying energy flow is increasing in ecology and paleoecology. However, secondary fractionation and turnover of stable isotopes in animals are poorly understood processes. This study shows that tissues of the gerbil (Meriones unguienlatus) have different δ13C values when equilibrated on corn (C4) or wheat (C3) diets with constant 13C/12C contents. Lipids were depleted 3.0‰ and hair was enriched 1.0‰ relative to the C4 diet. Tissue δ13C values were ranked hair>brain>muscle>liver>fat. After changing the gerbils to a wheat (C3) diet, isotope ratios of the tissues shifted in the direction of the δ13C value of the new diet. The rate at which carbon derived from the corn diet was replaced by carbon derived from the wheat diet was adequately described by a negative exponential decay model for all tissues examined. More metabolically active tissues such as liver and fat had more rapid turnover rates than less metabolically active tissues such as hair. The half-life for carbon ranged from 6.4 days in liver to 47.5 days in hair. The results of this study have important implications for the use of δ13C values as indicators of animal diet. Both fractionation and turnover of stable carbon isotopes in animal tissues may obscure the relative contributions of isotopically distinct dietary components (such as C3 vs. C4, or marine vs. terrestrial) if an animal's diet varies through time. These complications deserve attention in any study using stable isotope ratios of animal tissue as dietary indicators and might be minimized by analysis of several tissues or products covering a range of turnover times.  相似文献   

3.
The vertical distribution of dissolved greenhouse gases (CH4,CO2 and N2O), NO ,and 13C of CO2 in Lake Biwa during a stagnantperiod was precisely determined. CO2 as well as NO was accumulated in the hypolimnion, whereas NO and CH4concen\-trations were generally higher in theepilimnion than in the hypolimnion. In August, NO andCH4 were ephemerally accumulated at the thermocline. Theconcentration of CH4 always exceeded equilibrium with respectto air/water exchange. N2O was rather uniformly distributed inboth time and space, and remained near equilibrium with respect toair/water exchange. All of these observations are similar to otherstratified, oligotrophic lakes, in which the hypolimnia were welloxygenated. The 13C of CO2 became morenegative with increasing depth, and showed a strong negativecorrelation with apparent oxygen utilization. From the data, the 13Cvalue of organic matter decomposed into CO2 inthe hypolimnion was calculated by isotope mass-balance, and found tobe in a similar range to 13C of phytoplankton and benthic algaeand distinctively higher than 13C of both terrestrial andsedimentary organic matters. This suggests that autochthonous organicmatter was the major source of CO2.  相似文献   

4.
Paleoecological records suggest that growing season length and/or cloudiness may affect peatland carbon accumulation and testate amoeba-based environmental reconstructions, highlighting a need to understand how light intensity affects microbial communities. We shaded plots on two peatlands for two years to examine effects on testate amoeba communities, the relative abundance of mixotrophic and heterotrophic testate amoebae, transfer-function performance, and δ13C values of two species of mixotrophic testate amoebae. Surprisingly, relative abundance of mixotrophic species increased in shade, although compositional changes did not affect transfer-function performance. Shading did not affect δ13C values of Hyalosphenia papilio and Heleopera sphagni, which ranged from −23.5 to −19.6‰ and −23.2 to −19.2‰, respectively. These δ13C values were higher than those of potential food sources and lower than literature-derived values for Chlorella, the zoochlorellae inhabiting mixotrophic testate amoebae. δ13C values thus suggest that these mixotrophic species obtain some carbon from Chlorella, although coupled dietary and isotope studies are needed to quantify this contribution. More research is needed to assess impacts of light variability on peatland microbial communities; however, carbon sources are recorded by δ13C values of testate amoebae, indicating potential for studies of carbon cycling and how mixotrophy varies temporally and spatially.  相似文献   

5.
Regional food web studies that fail to account for small-scale isotopic variability can lead to a mismatch between an organism’s inferred and true trophic position. Misinterpretation of trophic status may result, substantially limiting spatial and temporal comparability of food web studies. We sampled several carbon sources and consumers in a nested design to assess the variability of food web members across small spatial scales (100 s of m to several km) in regions around the Windmill Islands and Vestfold Hills in East Antarctica. For carbon sources, δ13C in sea ice POM was particularly variable between locations (km apart) and between sites (100 s of m apart) with replicate samples varying by up to 16‰. Macroalgae δ13C was less variable (replicate samples ranging up to 6.9‰ for the red alga Iridaea cordata), yet still differed between locations. Sediment POM and pelagic POM were the least variable, displaying minimal differences between locations or sites for δ13C and δ15N. Three out of eight consumers were significantly different between locations for δ13C, and five out of eight for δ15N, with the fish Trematomus bernacchii the most variable for both δ13C and δ15N. At smaller scales, the amphipod Paramorea walkeri showed significant variation between sites in δ13C but not in δ15N. We attribute small-scale variability to the dynamic physical environment for carbon sources in coastal systems and a close coupling of diet to habitat for consumers. We highlight the need to account for small-scale spatial variation in sampling designs for regional food web studies.  相似文献   

6.
Plant cuticular n-alkanes have been successfully used as markers to estimate diet composition and intake of grazing herbivores. However, additional markers may be required under grazing conditions in botanically diverse vegetation. This study was conducted to describe the n-alkane profiles and the carbon isotope enrichment of n-alkanes of common plant species from the Mid Rift Valley rangelands of Ethiopia, and evaluate their potential use as nutritional markers. A total of 23 plant species were collected and analysed for long-chain n-alkanes ranging from heptacosane to hexatriacontane (C(27) to C(36)), as well as their carbon isotopic ratio ((13)C/(12)C). The analysis was conducted by gas chromatography/combustion isotope ratio mass spectrometry following saponification, extraction and purification. The isotopic composition of the n-alkanes is reported in the delta notation (δ(13)C) relative to the Vienna Pee Dee Belemnite standard. The dominant n-alkanes in the species were C(31) (mean ± s.d., 283 ± 246 mg/kg dry matter) and C(33) (149 ± 98 mg/kg dry matter). The carbon isotopic enrichment of the n-alkanes ranged from -19.37‰ to -37.40‰. Principal component analysis was used to examine interspecies differences based on n-alkane profiles and the carbon isotopic enrichments of individual n-alkanes. Large variability among the pasture species was observed. The first three principal components explained most of the interspecies variances. Comparison of the principal component scores using orthogonal procrustes rotation indicated that about 0.84 of the interspecies variances explained by the two types of data sets were independent of each other, suggesting that the use of a combination of the two markers can improve diet composition estimations. It was concluded that, while the n-alkane profile of the pasture species remains a useful marker for use in the study region, the δ(13)C values of n-alkanes can provide additional information in discriminating diet components of grazing animals.  相似文献   

7.
Tree root exudation (TRE) of water soluble organic carbon (WSOC) is an important but under-assessed component of net primary production, and is thought to strongly influence rhizosphere biogeochemistry. Riparian systems in particular are often viewed as biogeochemical hot spots fueled partially by root exudate WSOC. However, TRE rates have not been previously reported for these systems. The δ13C signatures of exudates may provide important insights into plant physiology and inform isotope-based methods to identify sources of soil CO2 fluxes, but this information is also generally lacking. In the present study, root exudate WSOC was collected in situ to assess both net exudation rates and exudate δ13C values in a temperate riparian forest. Net TRE rates were found to be most strongly related to a combination of tree species, root characteristics and net ecosystem exchange (Adj. R2 = 0.73; p < 0.001). In contrast, exudate δ13C values were correlated to time-lagged vapor pressure deficit (Adj. R2 = 0.21; p < 0.05) and air temperature (Adj. R2 = 0.43; p < 0.05), suggesting a rapid transfer of photosynthate from the canopy to the rhizosphere. Extrapolation of mean net TRE rates (13 µmol C g root?1 day?1) from a root mass basis to the entire sampling area suggests that TRE may account for as much as 3% of net annual C uptake and represents an important input of organic matter to riparian soils. Our findings of predictable TRE rates and exudate δ13C values in the present study suggest that future studies examining δ13C values of different plant components, soil organic matter and respired soil CO2 would benefit by accounting for the impact of root exudates.  相似文献   

8.
Schneider  Florian  Amelung  Wulf  Don  Axel 《Plant and Soil》2021,460(1-2):123-148
Plant and Soil - Agricultural soils in Germany store 2.54 Pg of organic carbon (C). However, information about how and when this C entered the soils is limited. This study illustrates how depth...  相似文献   

9.
There is debate in the literature as to whether scales of fishes require acidification to remove inorganic carbonates prior to stable isotope analysis. Acid-treated and untreated scales from 208 Atlantic salmon from nine locations on both sides of the Atlantic were analysed for δ13C and δ15N. Linear mixed-effect models determined the effect of acid treatment to be statistically significant. However, the mean difference was small (δ13C 0.1 ± 0.2‰, δ15N −0.1 ± 0.2‰) and not of biological relevance. This study concludes that Atlantic salmon scales do not need to be acidified prior to stable isotope analysis.  相似文献   

10.
John Pate  David Arthur 《Oecologia》1998,117(3):301-311
A recently described phloem-bleeding technique was used to study seasonal changes in δ13C, sugar levels and the amino acid:sugar balance of phloem translocate of 2- to 3-year old trees of Eucalyptus globulus at a rain-fed site (Eulup) and a waste-effluent-irrigated site (Albany) in south-west Australia. δ13C of phloem sap from the Eulup site fluctuated widely between winter (−27.6‰) and peak summer stress (−20.2‰), compared with a much smaller range of −28.4 to −26.3 at Albany. Seasonal changes in sugar concentrations in sap fluctuated closely with those of phloem δ13C, with highest concentrations and least negative δ13C values at times of greatest soil water deficit. Molar ratios of amino acids to sugars in phloem sap were similar between plantations in winter through to early summer. They then remained high at the nitrogen-rich effluent-treated site, but fell dramatically once soils dried out at Eulup. Mature leaf dry matter sampled at peak yearly stress (early autumn) showed more negative δ13C values than concurrently harvested phloem sap or recently initiated shoot apex dry matter, presumably because the sampled foliage had laid down its structural carbon earlier under relatively unstressed winter/spring conditions. Differences between Albany and Eulup were much greater for δ13C of phloem and new apical dry matter than for dry matter of mature foliage. Comparisons of δ13C signatures of phloem sap carbon with those of dry matter of nascent xylem tissues showed seasonal fluctuations in δ13C of phloem translocate which were mirrored a month or so later by those for xylem carbon. δ13C analyses of trunk growth rings from Eulup and Albany showed well-defined seasonal oscillations over the first 2 or 3 years of growth until irrigation commenced at Albany. Fluctuations in δ13C at the latter site then became noticeably less pronounced than at Eulup. Future use of phloem sap δ13C and solute analyses for studying seasonal water and nutrient status of E. globulus is discussed. Received: 9 April 1998 / Accepted: 20 August 1998  相似文献   

11.
12.
Stable isotope analysis is frequently used to infer resource use in natural populations of fishes. Studies have examined factors, other than diet, that influence δ15N and δ13C including tissue-specific rates of equilibration and starvation. Most such studies completed under laboratory conditions tightly control food quantity and its isotopic composition, but it is also necessary to evaluate the influence of these factors under more natural conditions. Using pumpkinseed sunfish (Lepomis gibbosus) we evaluated whether restricted rations below minimum daily requirements affects tissue equilibration to a change in diet by holding fish on two treatments that often reflect divergent resource use in natural populations (pelagic zooplankton or littoral macroinvertebrates). Over 42 days, δ15N values increased while δ13C values did not change, additionally neither were related to diet treatment. Increased δ15N values were negatively related to body condition while δ13C values were not, indicating that stable isotope values were more affected by decreasing body condition than by diet. Additionally, δ15N values changed more in the blood and liver tissues than in white muscle tissue, indicating that restricting food availability had greater effects on tissues with greater metabolic activity. We hypothesize that stable isotope values of consumers are subject to a tissue-specific trade-off between sensitivity to changes in resource use and resistance to the effects of low resource availability. This trade-off may require consideration in stable isotope studies of wild populations facing periodic limitations of food availability.  相似文献   

13.
The grass flora of Namibia (374 species in 110 genera) shows surprisingly little variation in 13C values along a rainfall gradient (50–600 mm) and in different habitat conditions. However, there are significant differences in the 13C values between the metabolic types of the C4 photosynthetic pathway. NADP-ME-type C4 species exhibit the highest 13C values (–11.7 ) and occur mainly in regions with high rainfall. NAD-ME-type C4 species have significantly lower 13C values (–13.4 ) and dominate in the most arid part of the precipitation regime. PCK-type C4 species play an intermediate role (–12.5 ) and reach a maximum abundance in areas of intermediate precipitation. This pattern is also evident in genera containing species of different metabolic types. Within the same genus NAD species reach more negative 13C values than PCK species and 13C values decreased with rainfall. Also in Aristida, with NADP-ME-type photosynthesis, 13C values decreased from –11 in the inland region (600 mm precipitation) to –15 near the coast (150 mm precipitation), which is a change in discrimination which is otherwise associated by a change in metabolism. The exceptional C3 species Eragrostis walteri and Panicum heterostachyum are coastal species experiencing 50 mm precipitation only. Many of the rare species and monotypic genera grow in moist habitats rather than in the desert, and they are not different in their carbon isotope ratios from the more common flora. The role of species diversity with respect to habitat occupation and carbon metabolism is discussed.  相似文献   

14.
Stable isotope ratios (δ15N and δ13C) and diet of three fish species, Stegastes nigricans, Chaetodon citrinellus and Epinephelus merra, were analyzed on the fringing coral reefs of two bays that are differentially exposed to river runoff on Moorea Island, French Polynesia. S. nigricans and C. citrinellus relied mostly on turf algae and presented similar trophic levels and δ15N values, whereas E. merra fed on large invertebrates (crabs and shrimps) and had higher trophic levels and δ15N values. Discrepancies existed between stomach content and stable isotope analyses for the relative importance of food items. Bayesian mixing models indicated that sedimented organic matter was also an important additional food for S. nigricans and C. citrinellus, and fishes for E. merra. The main sources of organic matter involved in the food webs ending with these species were algal turfs and surface sediments, while water particulate organic matter was barely used. Significant spatial differences in C and N isotopic ratios for sources and fishes were found within and between bays. Lower 13C and higher 15N values were observed for various compartments of the studied trophic network at the end of each bay than at the entrance. Differences were observed between bays, with organic sources and consumers being, on average, slightly more 13C-depleted and 15N-enriched in Cook’s Bay than in Opunohu Bay, linked with a higher mean annual flow of the river at Cook’s Bay. Our results suggest that rivers bring continental material into these two bays, which is partly incorporated into the food webs of fringing coral reefs at least close to river mouths. Thus, continental inputs can influence the transfer of organic matter within coral reef food webs depending on the diet of organisms.  相似文献   

15.
Carbon and nitrogen are important elements in biogeochemical studies of tidal wetlands. Three wetland zones in Luoyuan Bay in the Fujian province were chosen for this study; the Spartina alterniflora flat zone with Spartina alterniflora growing, the silt zone with no Spartina alterniflora growing and the Spartina alterniflora-silt flat zone – a transition zone between the two. The spatial and seasonal variations of total organic carbon (TOC), total nitrogen (TN), stable isotopes of organic material (δ13C, δ15N), C/N ratio, average particle size and sediment composition in surface and vertical sediments of different ecological zones were analyzed. Carbon and nitrogen accumulation and particle size effects in the different ecological zones were discussed and the indicators of δ13C and C/N ratios were also compared. TOC, TN, δ13C contents, C/N ratios, and average particle size varied within the ranges of 0.611–1.133%, 0.053–0.090%, ?22.60 to ?18.92‰, 12.3–15.7, and 6.4–8.7 μm, respectively. Sediments were mainly silt-sized. Besides δ15N values, the other parameters, such as TOC, TN, δ13C contents, C/N ratios, and average particle size showed an obvious zonal distribution in surface sediments. The distribution of TOC and TN contents reflected the distribution of Spartina alterniflora within the bay. The profile and seasonal variations of these parameters in different ecological zones indicated that variations in the Spartina alterniflora flat and transition zones were complex because of the effect of Spartina alterniflora. Vertical and seasonal variations were sampled in the silt flat area. The profile and seasonal variations of TOC, TN and δ13C were similar in the transition zone and the Spartina alterniflora flat zone. Seasonal concentrations of TOC, TN and δ13C decreased from autumn > spring > winter > summer. The seasonal variation of carbon and nitrogen in the sediments may be influenced by temperature, particle size, plankton and benthos. The particle size effect was significant in the surface sediments and profile sediments of the transition zone. However, other factors had a greater effect on the distributions of TOC and TN in the Spartina alterniflora flat and silt flat zones. C/N ratios in sediments of the Spartina alterniflora flat, transition zone and silt flat were close to or > 12, indicating that the organic material source was dominated by terrestrial inputs. However, δ13C values decreased from the Spartina alterniflora flat zone > transition zone > silt flat zone indicating that the organic material source was predominantly from marine inputs. Thus the indications from C/N ratios and δ13C were different. There was no clear relationship between C/N ratios and δ13C values and a better relationship between δ13C values and TOC concentrations suggested that δ13C values provided a better indication of the organic source. Limited amounts of organic material came from Spartina alterniflora. This study has provided basic data for researching biogeochemical processes of biogenic elements in tidal wetlands and vegetation restoration, and has also provided a reference for assessing and protecting the environment and ecological systems in wetlands.  相似文献   

16.
17.
Reviews in Fish Biology and Fisheries - Stable isotope analysis (SIA) is widely used to assess animal diet and movements, requiring accurate estimates of trophic discrimination factors (TDFs)....  相似文献   

18.
1.?The feeding range of an individual is central to food web dynamics as it determines the spatial scale of predator-prey interactions. However, despite recognition of its importance as a driving force in population dynamics, establishing feeding range is seldom done as detailed information on trophic interactions is difficult to obtain. 2.?Biological markers are useful to answer this challenge as long as spatial heterogeneity in signal is present within the area investigated. A spatially complex ecosystem, Lake St. Pierre (LSP), a fluvial lake of the St Lawrence River (Québec, Canada), offered a unique opportunity to determine the feeding range of a secondary consumer, yellow perch (Perca flavescens) using isotopic ratios of carbon (δ(13)C). However, because food chains based on phytoplankton have generally more negative δ(13) C than those depending on periphyton, it was essential to determine the contribution of zooplankton in fish diet to correctly interpret spatial patterns of δ(13)C. We used parasites in perch to examine whether their δ(13)C was reflecting local δ(13)C baseline conditions rather than a feeding specialization on zooplankton. 3.?δ(13)C of primary consumers was highly variable and exhibited a striking gradient along the shore-channel axis, suggesting that δ(13)C should reflect an individual consumer's spatial position in LSP. 4.?This strong isotopic gradient allowed us to estimate the spatial scale of the resources used by individual perch following an approach presented by Rasmussen, Trudeau & Morinville (Journal of Animal Ecology, 78, 2009, 674). By comparing the δ(13)C variability in perch to that of primary consumers, we estimated that the adults feeding range was around 2 km along the shore-channel axis. 5.?The combined use of isotopic ratios and parasites allowed us to determine that the adult population uses a wide range of habitats between the flood plain and the main channel. However, individually, each perch depended on a limited foodshed.  相似文献   

19.
Correctly estimating the trophic fractionation factors (Δ15N and Δ13C) in controlled laboratory conditions is essential for the application of stable isotope analysis in studies on the trophic structure of soil communities. Laboratory experiments usually suggest large 15N/14N and small 13C/12C trophic fractionation, but in field studies litter-dwelling microarthropods and other invertebrates are consistently enriched in 13C relative to plant litter. In the present study, we report data from two laboratory experiments investigating both fungi–collembolans and litter–fungi–collembolans systems. In the fungi–collembolans system, Δ15N and Δ13C averaged 1.4 ± 0.1 and 1.0 ± 0.2 ‰, respectively. In microcosms with fungi-inoculated litter, the difference in δ15N between collembolans and plant litter averaged 1.5 ± 0.2 ‰, confirming the relatively small 15N/14N trophic fractionation at the basal level of detrital foodwebs reported in numerous field studies. In full agreement with field observations, the difference in δ13C between bulk litter and collembolans in laboratory microcosms averaged 3.6 ± 0.1 ‰ and only little depended on collembolan species identities or the presence of water-soluble compounds in the litter. We conclude that increased δ13C values typical of litter-dwelling decomposers are largely determined by an increased 13C content in saprotrophic microorganisms.  相似文献   

20.
The stable carbon and oxygen isotope ratios in cellulose of C3 and C4 plants growing on the surface of a montane peat bog in the Nilgiri hills, southern India, were measured. The mean monthly δ13C values in cellulose of both C3 and C4 plants are found to be significantly related to rainfall, while the δ18O values are sensitive to changes in maximum temperature and relative humidity of the region. Further, higher δ18O values were observed in C4 plants compared to C3 plants, suggesting that C4 plants are probably less sensitive to relative humidity as compared to C3 plants and are able to photosynthesize even during drier conditions. The plant isotope-climate correlations thus established can be used for reconstructing the past temperature and rainfall conditions of the tropics from the isotopic ratios of peat deposits, derived from a mixture of C3 and C4 plants in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号