首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The last four years have brought exciting progress in membrane protein research. Finally those many efforts that have been put into expression of eukaryotic membrane proteins are coming to fruition and enable to solve an ever-growing number of high resolution structures. In the past, many skilful optimization steps were required to achieve sufficient expression of functional membrane proteins. Optimization was performed individually for every membrane protein, but provided insight about commonly encountered bottlenecks and, more importantly, general guidelines how to alleviate cellular limitations during microbial membrane protein expression. Lately, system-wide analyses are emerging as powerful means to decipher cellular bottlenecks during heterologous protein production and their use in microbial membrane protein expression has grown in popularity during the past months.  相似文献   

2.
  1. Download : Download high-res image (272KB)
  2. Download : Download full-size image
  相似文献   

3.
Summary The filamentous fungus Aspergillus oryzae was found to grow well on the effluents produced during the extraction of palm oil. Biomass yields of approximately 50 g 100 g–1 organic matter were obtained containing 40% crude protein, with BOD reductions of 85% and COD reductions of 75% to 80% in batch culture following optimisation of growth conditions. Supplementation with an inorganic nitrogen source was found to be necessary (but not supplementation with phosphate or sulphate sources).The more resistant substrate constituents to biodegradation were water soluble carbohydrate and nitrogenous material, possibly Maillard reaction products, and polyphenols.  相似文献   

4.
The influence of dietary nitrogen (N) available in the rumen on the efficiency of microbial protein production was examined for 43 predominantly low-roughage diets given to cattle or sheep with rumen and duodenal (re-entrant) cannulae. The minimum amount of available N required for efficient microbial protein production was 2.0 g/100 g of organic matter actually digested in the rumen. When the diet supplied 2.7 g of available N/100 g of organic matter actually digested in the rumen, there was no net utilisation of recycled N.From this information, concentrations of N in organic matter required in low-roughage diets differing in organic matter digestibility and availability of dietary N have been calculated. Also a method of calculating the quantities of amino acid N and of particular amino acids absorbed from the small intestine from a knowledge of the diet composition is presented.  相似文献   

5.
  1. Download : Download high-res image (162KB)
  2. Download : Download full-size image
Microbes of interest can be engineered to improve the production of SCPs for human-food and animal-feed applications. These improvements include feedstock conversion, biomass accumulation, protein production, and the production of nutritional and functional compounds.
  相似文献   

6.
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.  相似文献   

7.
Lovastatin blocks the biosynthesis of the isoprenoid precursor, mevalonate. When Friend murine erythroleukemia (MEL) cells are cultured in medium containing lovastatin, the precursor of murine leukemia virus envelope glycoprotein (gPr90env) fails to undergo proteolytic processing, which normally occurs in the Golgi complex. Consequently, newly synthesized envelope proteins are not incorporated into viral particles that are shed into the culture medium. gPr90env appears to be localized in a pre-Golgi membrane compartment, based on its enrichment in subcellular fractions containing NADPH-cytochrome c reductase activity and the sensitivity of its carbohydrate chains to digestion with endoglycosidase H. Arrest of gPr90env processing occurs at concentrations of lovastatin that are not cytostatic, and the effect of the inhibitor is prevented by addition of mevalonate to the medium. The low molecular mass GTP-binding proteins, rab1p and rab6p, which are believed to function in early steps of the exocytic pathway, are normally modified posttranslationally by geranylgeranyl isoprenoids. However, in MEL cells treated with 1 microM lovastatin, nonisoprenylated forms of these proteins accumulate in the cytosol prior to arrest of gPr90env processing. These observations suggest that lovastatin may prevent viral envelope precursors from reaching the Golgi compartment by blocking the isoprenylation of rab proteins required for ER to Golgi transport.  相似文献   

8.
As the demand for biofuels for transportation is increasing, it is necessary to develop technologies that will allow for low-cost production of biodiesel. Conventional biodiesel is mainly produced from vegetable oil by chemical transesterification. This production, however, has relatively low land-yield and is competing for agricultural land that can be used for food production. Therefore, there is an increasing interest in developing microbial fermentation processes for production of biodiesel as this will allow for the use of a wide range of raw-materials, including sugar cane, corn, and biomass. Production of biodiesel by microbial fermentation can be divided into two different approaches, (1) indirect biodiesel production from oleaginous microbes by in vitro transesterification, and (2) direct biodiesel production from redesigned cell factories. This work reviews both microbial approaches for renewable biodiesel production and evaluates the existing challenges in these two strategies.  相似文献   

9.
Summary A filamentous fungus Penicillium cyclopium, capable of growing on deproteinized whey was isolated and characterized for the purpose of production of microbial protein.This organism has a maximum specific growth rate of 0.2 h–1 at pH 3.0 to 4.5 and 28°C in a medium containing only ammonium nitrogen and deproteinized whey. The yield coefficients are 0.68 g biomass/g lactose, 12.0 g biomass/g nitrogen, and 2.10 g biomass/g oxygen, respectively.Crude protein and total nucleic acid contents of this organism are 47.5% and 7.4% (dry cell weight basis), respectively. The profile of essential amino acids shows that it could be a good source of animal feed or food protein.  相似文献   

10.
11.
There is considerable interest in exploiting the novel physical and biological properties of microbial exopolysaccharides in industry and medicine. For economic and scientific reasons, large scale production under carefully monitored and controlled conditions is required. Producing exopolysaccharides in industrial fermenters poses several complex bioengineering and microbiological challenges relating primarily to the very high viscosities of such culture media, which are often exacerbated by the producing organism’s morphology. What these problems are, and the strategies for dealing with them are discussed critically in this review, using pullulan, curdlan, xanthan, and fungal β-glucans as examples of industrially produced microbial exopolysaccharides. The role of fermenter configuration in their production is also examined.  相似文献   

12.
There is considerable interest in exploiting the novel physical and biological properties of microbial exopolysaccharides in industry and medicine. For economic and scientific reasons, large scale production under carefully monitored and controlled conditions is required. Producing exopolysaccharides in industrial fermenters poses several complex bioengineering and microbiological challenges relating primarily to the very high viscosities of such culture media, which are often exacerbated by the producing organism's morphology. What these problems are, and the strategies for dealing with them are discussed critically in this review, using pullulan, curdlan, xanthan, and fungal β-glucans as examples of industrially produced microbial exopolysaccharides. The role of fermenter configuration in their production is also examined.  相似文献   

13.
Anaerobic digesters produce biogas, a mixture of predominantly CH4 and CO2, which is typically incinerated to recover electrical and/or thermal energy. In a context of circular economy, the CH4 and CO2 could be used as chemical feedstock in combination with ammonium from the digestate. Their combination into protein-rich bacterial, used as animal feed additive, could contribute to the ever growing global demand for nutritive protein sources and improve the overall nitrogen efficiency of the current agro- feed/food chain. In this concept, renewable CH4 and H2 can serve as carbon-neutral energy sources for the production of protein-rich cellular biomass, while assimilating and upgrading recovered ammonia from the digestate. This study evaluated the potential of producing sustainable high-quality protein additives in a decentralized way through coupling anaerobic digestion and microbial protein production using methanotrophic and hydrogenotrophic bacteria in an on-farm bioreactor. We show that a practical case digester handling liquid piggery manure, of which the energy content is supplemented for 30% with co-substrates, provides sufficient biogas to allow the subsequent microbial protein as feed production for about 37% of the number of pigs from which the manure was derived. Overall, producing microbial protein on the farm from available methane and ammonia liberated by anaerobic digesters treating manure appears economically and technically feasible within the current range of market prices existing for high-quality protein. The case of producing biomethane for grid injection and upgrading the CO2 with electrolytic hydrogen to microbial protein by means of hydrogen-oxidizing bacteria was also examined but found less attractive at the current production prices of renewable hydrogen. Our calculations show that this route is only of commercial interest if the protein value equals the value of high-value protein additives like fishmeal and if the avoided costs for nutrient removal from the digestate are taken into consideration.  相似文献   

14.
15.
Transglutaminase (EC 2.3.2.13) initially attracted interest because of its ability to reconstitute small pieces of meat into a 'steak'. The extremely high cost of transglutaminase of animal origin has hampered its wider application and has initiated efforts to find an enzyme of microbial origin. Since the early 1990s, many microbial transglutaminase-producing strains have been found, and production processes have been optimized. This has resulted in a rapidly increasing number of applications of transglutaminase in the food sector. However, applications of microbial transglutaminase in other sectors have been explored to a much lesser extent. Here, we will present the wider potential of transglutaminases and discuss recent efforts that could contribute to the realization of their potential.  相似文献   

16.
Highlights? Recombinant therapeutic protein production is a multibillion dollar market. ? E. coli comprises 30% of recombinant protein production but not suitable for human therapeutics. ? Eukaryotic systems other than yeast are costly or not so efficient regarding protein yields. ? S. cerevisiae shows a high potential to be a suitable platform for therapeutic proteins. ? Human blood proteins are the next candidates to be challenged by S. cerevisiae system.  相似文献   

17.
《Bioscience Hypotheses》2008,1(6):336-337
TSGA10 protein is important for sperm motility and fetal development. On the basis of population genetics, we hypothesized that amino acid residue 273 may be critical for the proper proteolytic processing of this protein, and hence for its function.  相似文献   

18.
A temperature-sensitive mutant (ts3) of Newcastle disease virus was physiologically characterized. All major viral structural proteins were synthesized at the permissive (37 degrees C) and nonpermissive (42 degrees C) temperatures, but the fusion (F) glycoprotein was not cleaved at 42 degrees C. In immunocytochemical electron microscopy, the F protein was abundant in the rough endoplasmic reticulum but not in cytoplasmic membrane at 42 degrees C. Noninfectious hemagglutinating virus particles containing all major structural proteins except the F protein were released at 42 degrees C from infected cells. We concluded that the defect in ts3 resides in the intracellular processing of the F protein.  相似文献   

19.
20.
Actin-based motility of intracellular microbial pathogens.   总被引:3,自引:0,他引:3  
M B Goldberg 《Microbiology and molecular biology reviews》2001,65(4):595-626, table of contents
A diverse group of intracellular microorganisms, including Listeria monocytogenes, Shigella spp., Rickettsia spp., and vaccinia virus, utilize actin-based motility to move within and spread between mammalian host cells. These organisms have in common a pathogenic life cycle that involves a stage within the cytoplasm of mammalian host cells. Within the cytoplasm of host cells, these organisms activate components of the cellular actin assembly machinery to induce the formation of actin tails on the microbial surface. The assembly of these actin tails provides force that propels the organisms through the cell cytoplasm to the cell periphery or into adjacent cells. Each of these organisms utilizes preexisting mammalian pathways of actin rearrangement to induce its own actin-based motility. Particularly remarkable is that while all of these microbes use the same or overlapping pathways, each intercepts the pathway at a different step. In addition, the microbial molecules involved are each distinctly different from the others. Taken together, these observations suggest that each of these microbes separately and convergently evolved a mechanism to utilize the cellular actin assembly machinery. The current understanding of the molecular mechanisms of microbial actin-based motility is the subject of this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号