首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selectable marker genes are widely used for the efficient transformation of crop plants. In most cases, selection is based on antibiotic or herbicide resistance genes because they tend to be most efficient. The Synechococcus hemL gene has been successfully employed as a selectable marker for tobacco and alfalfa genetic transformation, by using gabaculine as the selective agent. The gene conferring gabaculine resistance is a mutant form of the hemL gene from Synechococcus PCC6301, strain GR6, encoding a gabaculine insensitive form of the glutamate1-semialdehyde aminotransferase (GSA) enzyme. In the present study we compared the transformation and selection efficiency of the common selection method based on the Streptomyces hygroscopicus bar gene conferring resistance to Bialaphos®, with both the Synechococcus hemL gene and a Medicago sativa mutated GSA gene (MsGSAgr) conferring resistance to phytotoxin gabaculine. Callus derived from immature embryos of the durum wheat cultivar Varano were simultaneously co-bombarded with bar/hemL and bar/MsGSAgr genes. After gene delivery, the marker genes were individually evaluated through all the selection phases from callus regeneration to adult plant formation, and compared for their transformation and selection efficiency. The integration of the three genes in the T0 generation was confirmed by PCR analysis with specific primers for each gene and southern blot analysis. Both Synechococcus hemL and MsGSA were more efficient than bar for biolistic transformation (2.8% vs. 1.8% and 1.1% vs. 0.5%) and selection (79% vs. 43% and 87% vs. 50%). Thus, an efficient selection method for durum wheat transformation was established that obviates the use of herbicide resistance genes.  相似文献   

2.
A new dominant hybrid selective marker for higher eukaryotic cells   总被引:155,自引:0,他引:155  
A new dominant hybrid genetic marker, suitable for selection in higher eukaryotic cells, has been obtained by linking the promoter region of the Herpes simplex virus type I thymidine kinase gene to the gene coding for the aminoglycoside 3′ phosphotransferase coded for by the Tn5 transposon. As described for yeasts (Jimenez &; Davies, 1980), the expression of the enzyme allows the formation of cellular clones resistant to the antibiotic G-418, which is otherwise toxic to the cells. This dominant marker was expressed in all cell lines tested (human, simian and murine). The construction of the hybrid gene has been optimized and, for a given construction, transformation efficiency depends on the cell line. We also report that an unlinked gene can be cotransferred into cells with the marker and be expressed at high frequency.  相似文献   

3.
A genetic transformation method via secondary somatic embryogenesis was developed for alfalfa (Medicago sativa L.). Mature somatic embryos of alfalfa were infected by Agrobacterium strain GV3101 containing the binary vector pCAMBIA2301. pCAMBIA2301 harbors the uidA Gus reporter gene and npt II acts as the selectable marker gene. Infected primary embryos were placed on SH2K medium containing plant growth regulators to induce cell dedifferentiation and embryogenesis under 75 mg/L kanamycin selection. The induced calli were transferred to plant medium free of plant growth regulators for embryo formation while maintaining selection. Somatic embryos germinated normally upon transfer to a germination medium. Plants were recovered and grown in a tissue culture room before transfer to a greenhouse. Histochemical analysis showed high levels of GUS activity in secondary somatic embryos and in different organs of plants recovered from secondary somatic embryos. The presence and stable integration of transgenes in recovered plants were confirmed by polymerase chain reaction using transgene-specific primers and Southern blot hybridization using the npt II gene probe. The average transformation efficiency achieved via secondary somatic embryogenesis was 15.2%. The selection for transformation throughout the cell dedifferentiation and embryogenic callus induction phases was very effective, and no regenerated plants escaped the selection procedure. Alfalfa transformation is usually achieved through somatic embryogenesis using different organs of developed plants. Use of somatic embryos as explants for transformation can avoid the plant development phase, providing a faster procedure for introduction of new traits and facilitates further engineering of previously transformed lines.  相似文献   

4.
Pleurotus ostreatus is widely cultivated worldwide, but the lack of an efficient transformation system regarding its use restricts its genetic research. The present study developed an improved and efficient Agrobacterium tumefaciens-mediated transformation method in P. ostreatus. Four parameters were optimized to obtain the most efficient transformation method. The strain LBA4404 was the most suitable for the transformation of P. ostreatus. A bacteria-to-protoplast ratio of 100:1, an acetosyringone (AS) concentration of 0.1 mM, and 18 h of co-culture showed the best transformation efficiency. The hygromycin B phosphotransferase gene (HPH) was used as the selective marker, and EGFP was used as the reporter gene in this study. Southern blot analysis combined with EGFP fluorescence assay showed positive results, and mitotic stability assay showed that more than 75% transformants were stable after five generations. These results showed that our transformation method is effective and stable and may facilitate future genetic studies in P. ostreatus.  相似文献   

5.
Frankia is a unique actinobacterium having abilities to fix atmospheric dinitrogen and to establish endosymbiosis with trees, but molecular bases underlying these interesting characteristics are poorly understood because of a lack of stable transformation system. Extremely high GC content of Frankia genome (>70%) can be a hindrance to successful transformation. We generated a synthetic gentamicin resistance gene whose codon usage is optimized to Frankia (fgm R ) and evaluated its usefulness as a selection marker using a transient transformation system. Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgm R instead of a native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and increased antibiotic resistance. Our result shows that similarity in codon usage pattern is an important factor to be taken into account when exogenous transgenes are expressed in Frankia cells.  相似文献   

6.
The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.  相似文献   

7.
《Mycoscience》2002,43(3):213-217
Genetic analysis of all Mucor-like fungi is severely impaired by the low efficiency of transformation systems and the genetic instability of the introduced plasmid constructs. The transformation efficiency of one of the model systems among mucoralean fungi, Absidia glauca, was improved considerably by microprojectile bombardment. For this purpose, a plasmid was constructed conferring (i) neomycin resistance as a selective marker and (ii) fluorescence due to expression of the gfp gene from the jellyfish Aequorea victoria. Compared with previous techniques, this method offers increased efficiency, with considerably easier handling than procedures based on protoplasts and, therefore, improved reliability. The uninucleate sporangiospores of A. glauca can be transformed early during the germination process. At this stage the number of nuclei ranges between 1 and 2. Thus, the abundance of transgenic nuclei in the coenocytic mycelia is high, and fewer problems are encountered with detecting low expression levels of the genes used for selection and monitoring of transformants.  相似文献   

8.
Luo K  Zheng X  Chen Y  Xiao Y  Zhao D  McAvoy R  Pei Y  Li Y 《Plant cell reports》2006,25(5):403-409
We have assessed the use of a homeobox gene knotted1 (kn1) from maize as a selectable marker gene for plant transformation. The kn1 gene under the control of cauliflower mosaic virus 35S promoter (35S::kn1) was introduced into Nicotiana tabacum cv. Xanthi via Agrobacterium-mediated transformation. Under nonselective conditions (without antibiotic selection) on a hormone-free medium (MS), a large number of transgenic calli and shoots were obtained from explants that were infected with Agrobacterium tumefaciens LBA4404 harboring the 35S::kn1 gene. On the other hand, no calli or shoots were produced from explants that were infected with an Agrobacterium strain harboring pBI121 (nptII selection) or from uninfected controls cultured under identical conditions. Relative to kanamycin selection conferred by nptII, the use of kn1 resulted in a 3-fold increase in transformation efficiency. The transgenic status of shoots obtained was confirmed by both histochemical detection of GUS activity and molecular analysis. The results presented here suggest that kn1 gene could be used as an effective alternative selection marker with a potential to enhance plant transformation efficiency in many plant species. With kn1 gene as a selection marker gene, no antibiotic-resistance or herbicide-resistance genes are needed so that potential risks associated with the use of these traditional selection marker genes can be eliminated.  相似文献   

9.
We previously reported Agrobacterium-mediated transformation methods for the liverwort Marchantia polymorpha using the hygromycin phosphotransferase gene as a marker for selection with hygromycin. In this study, we developed three additional markers for M. polymorpha transformation: the gentamicin 3''-acetyltransferase gene for selection with gentamicin; a mutated acetolactate synthase gene for selection with chlorsulfuron; and the neomycin phosphotransferase II gene for selection with G418. Based on these four marker genes, we have constructed a series of Gateway binary vectors designed for transgenic experiments on M. polymorpha. The 35S promoter from cauliflower mosaic virus and endogenous promoters for constitutive and heat-inducible expression were used to create these vectors. The reporters and tags used were Citrine, 3×Citrine, Citrine-NLS, TagRFP, tdTomato, tdTomato-NLS, GR, SRDX, SRDX-GR, GUS, ELuc(PEST), and 3×FLAG. These vectors, designated as the pMpGWB series, will facilitate molecular genetic analyses of the emerging model plant M. polymorpha.  相似文献   

10.
Soybean transformation is limited by the lack of multiple efficient selectable marker systems. Biolistic transformation of somatic proliferative embryogenic cultures, one of the commonly used soybean transformation methods, relies largely on hygromycin phosphotransferase II (hptII) selection. The purpose of the present study was to establish another efficient selectable marker system to facilitate multiple gene transformations of soybean. We tested neomycin phosphotransferase II (nptII) that has been used successfully in cotyledonary node transformation, but with limited success in transformation of embryogenic cultures. Transgenic events were obtained using nptII with improved G418 selection without generating escapes. G418 selection required longer recovery and selection periods, and resulted in a lower efficiency of initial transformants compared to hygromycin selection. Six independent fertile transgenic plants were recovered using nptII and G418, a frequency similar to that obtained with hygromycin selection. Soybean embryogenic cultures co-transformed with the hptII and nptII markers showed resistance to both hygromycin B and G418, while regeneration and plant fertility were not adversely affected. The nptII will be useful as a second selectable marker for multiple gene transformations in basic and applied soybean research.  相似文献   

11.

Key message

Agrobacterium tumefaciens mediates high frequency of germline transformation of cotton meristem explants. The meristem transformation system we developed is rapid, high throughput and genotype-flexible.

Abstract

We have developed a high throughput cotton transformation system based on direct Agrobacterium inoculation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). The explants were inoculated with a disarmed A. tumefaciens strain, AB33 harboring a 2 T-DNA binary vector pMON114908. This vector contained a gene of interest, an intron-disrupted β-glucuronidase gene in one T-DNA, and a selectable marker gene, aadA in the other T-DNA. Critical factors, such as method of co-culture, culture temperature during selection, composition of selection medium, and selection scheme were found to influence transformation frequency. The cycle time from initial inoculation to the transplanting of transgenic plants to soil was 7–8 weeks. Stable integration of transgenes and their transmission to progeny were confirmed by molecular and genetic analyses. Transgenes segregated in the expected Mendelian fashion in the T1 generation for most of the transgenic events. It was possible to recover marker-free events in the T1 generation when utilizing a binary vector that contained the selectable marker and gene of interest expression cassettes on independent T-DNAs. The procedure presented here has been used to regenerate thousands of independent transgenic events from multiple varieties with numerous constructs, and we believe it represents a major step forward in cotton transformation technology.  相似文献   

12.
We have developed a reproducible method of Agrobacterium tumefaciens mediated stable genetic transformation of white jute (Corchorus capsularis cv. JRC 321) utilizing the shoot organogenesis potential of the shoot tip apical meristem. A. tumefaciens strain LBA4404 harboring the binary vector pCAMBIA 1301 was used in the transformation experiments. The explants were subjected to varying durations of preculture and cocultivation with A. tumefaciens in the presence of acetosyringone in order to optimize the conditions conducive for the highest expression of transgene. A schedule of 1 day preculture of shoot tips followed by 3 days cocultivation was optimized for Agrobacterium mediated stable genetic transformation of C. capsularis cv. JRC 321. The optimized lethal doses of the antibiotic hygromycin B for shoot tips (12 mg/L) and for 5 days old seedlings (14 mg/L) were employed in efficient selection of the transformed tissues. This method of transformation resulted in a mean transformation efficiency of 4.09 %. Stable expression of the intron harbored gusA transgene was observed in mature organs of the transformed plants and their progenies. Genomic integration and inheritance of the hpt transgene was further confirmed by Southern blot analysis. The transformed plants exhibited normal morphology and most of them produced viable progenies, many of which segregated in a 3:1 ratio following Mendelian inheritance for a single dominant locus. However, strong P value support for 3:1 segregation ratio was obtained in case of two lines of independent transformants. Nevertheless, the method of transformation mentioned in this protocol could be effectively implemented in genetic transformation of many other cultivars of jute due to the genotype independent regeneration potential of the shoot tip explants.  相似文献   

13.
Narrow-leaf lupin (NLL) is the main legume crop grown in rotation with wheat and other cereals in Western Australia. Efforts to improve NLL germplasm by use of genetic technologies have been hampered by the lack of an efficient genetic transformation method, an issue that is in common with dominant crop legumes globally. Prior research has primarily used the bar gene for phosphinothricin (PPT) resistance. The aim of recent research has been to investigate alternative selection methodologies, in order to determine whether the limitations of low frequency of transgenic shoots, combined with chimerism at T0 could be overcome. Investigation of hygromycin resistance as a selectable marker compared to PPT is reported here. The results suggested that hygromycin resistance was a more suitable selectable marker for NLL transformation than PPT. Surprisingly, from investigation of transformation using the GUS reporter gene, it was also observed that transformation frequency was greater when selection treatment was reduced or delayed, compared to the existing protocols. To further investigate this observation, an eGFP expressing construct was prepared. Observations within the first week after Agrobacterium exposure of lupin explants demonstrated that transformation of NLL explant cells was not a rate-limiting step. Instead, the results indicated that the current selection methodology was killing the cells that were competent to regenerate into transgenic shoots. It was concluded that further research on the development of the treated explants should focus on delayed selection and exposure to Agrobacterium of cells below the apical meristem.  相似文献   

14.
The parameters for delivery of expression cassettes to cells of wheat morphogenic callus induced from immature embryos were optimized. Three systems (gradation, delayed, and regeneration) for in vitro selection of transgenic wheat tissue using the bar gene, providing resistance to the herbicide phosphinothricin (PPT), were compared. The efficiency of gene delivery to the cells competent for plant regeneration was assessed by comparing the number of spots transiently expressing uidA gene (encoding β-glucuronidase) per unit surface of the morphogenic calluses treated under various conditions. The selection systems in question were evaluated by comparing the transformation efficiency frequencies. The optimal parameters for wheat biolistic transformation using a particle inflow gun were determined, namely, the distance between the particle source and the target tissue (12 cm) and helium pressure during the shot (6 atm). The optimal time of callus tissue development on the medium inducing callus formation was determined (10–14 days). Comparison of the three selection variants demonstrated that the regeneration system was the most efficient for producing true transgenic plants of common wheat.  相似文献   

15.
We have recently developed a gene disruption system for the hyperthermophilic archaeon Thermococcus kodakaraensis by utilizing a pyrF-deficient mutant, KU25, as a host strain and the pyrF gene as a selectable marker. To achieve multiple genetic manipulations for more advanced functional analyses of genes in vivo, it is necessary to establish multiple host-marker systems or to develop a system in which repeated utilization of one marker gene is possible. In this study, we first constructed a new host strain, KU216 (ΔpyrF), by specific and almost complete deletion of endogenous pyrF through homologous recombination. In this refined host, there is no need to consider unknown mutations caused by random mutagenesis, and unlike in the previous host, KU25, there is little, if any, possibility that unintended recombination between the marker gene and the chromosomal allele occurs. Furthermore, a new host-marker combination of a trpE deletant, KW128 (ΔpyrF ΔtrpE::pyrF), and the trpE gene was developed. This system made it possible to isolate transformants through a more simple selection procedure as well as to deduce the transformation efficiency, overcoming practical disadvantages of the first system. The effects of the transformation conditions were also investigated using this system. Finally, we have also established a system in which repeated utilization of the counterselectable pyrF marker is possible through its excision by pop-out recombination. Both endogenous and exogenous sequences could be applied as tandem repeats flanking the marker pyrF for pop-out recombination. A double deletion mutant, KUW1 (ΔpyrF ΔtrpE), constructed with the pop-out strategy, was demonstrated to be a useful host for the dual markers pyrF and trpE. Likewise, a triple deletion mutant, KUWH1 (ΔpyrF ΔtrpE ΔhisD), could also be constructed. The transformation systems developed here now provide the means for extensive genetic studies in this hyperthermophilic archaeon.  相似文献   

16.
A convenient method to remove selectable markers from fungal transformants permits the markers to be used for sequential transformations, and should also reduce public concerns and regulatory impediments to applications involving environmental release of genetically modified fungi. We report a method for marker removal that requires no genetic selection. Protoplasts from Neotyphodium coenophialum, Neotyphodium uncinatum and Epichloë festucae transformants containing a hygromycin B phosphotransferase gene (hph) flanked by loxP sites in direct orientation were transiently transfected with a Cre-recombinase expression plasmid, and then cultured without selection. The marker was eliminated in 0.5–2% of the colonies, leaving a single loxP sequence and no other exogenous DNA in the genome. This approach was also applied to the yA gene of Aspergillus nidulans as a laboratory exercise to demonstrate multiple principles of transformation and genome manipulation. Thus, the Cre-expression plasmid and transient transfection approach was rapid, flexible and useful for diverse filamentous fungi.  相似文献   

17.
Although targeted mutagenesis of Streptococcus pneumoniae is readily accomplished with the aid of natural genetic transformation and chimeric donor DNA constructs assembled in vitro, the drug resistance markers often employed for selection of recombinant products can themselves be undesirable by-products of the genetic manipulation. A new cassette carrying the erythromycin-resistance marker ermAM that can be used as a temporary marker for selection of desired recombinants is described. The cassette may subsequently be removed at will by virtue of an embedded fucose-regulated Cre recombinase gene and terminal lox66 and lox71 Cre recognition sites, with retention of 34 bp from the cassette as an inert residual double-mutant lox72 site.  相似文献   

18.
We performedAgrobacterium-mediated genetic transformation of creeping bentgrass(Agrostis stolonifera L.) and produced herbicide-resistant transformants from commercial cultivars Crenshaw and Penncross. Seed-derived embryogenie calli were infected withA. tumefaciens EHA105 harboring pCAMBIA 3301, which includes an intron-containinggus reporter and abar selection marker. To establish a stable system, we examined various factors that could potentially influence transformation efficiency during the pre-culture, infection, and co-cultivation steps. The addition of kinetin to the callus pre-culture media increased efficiency about three-fold. Once the optimum infection and co-cultivation conditions were identified, this protocol was used successfully to bulk-produce herbicide-resistant transgenic plants whose herbicide resistance was confirmed using the BASTA® resistance test. Southern blot analysis demonstrated integration and low copy numbers of the integrated transgenes, and northern blot analysis verified their expression. Thus, we have established an efficient genetic transformation system for creeping bentgrass and confirmed a high frequency of single-copy transgene integration and functional gene expression.  相似文献   

19.
To investigate the gene function of radish (Raphanus sativus L.), several attempts have been made to generate genetically transformed radish. However, no efficient and relatively simple method for the genetic transformation of radish has been developed to date. In this study, we established an Agrobacterium-mediated genetic transformation method using the hypocotyl-derived explants of radish cultivar “Pirabikku”. Primarily based on the Brassica transformation procedure, we optimized it for radish transformation. Using this system, the transformation efficiency of radish hypocotyl explants by Agrobacterium tumefaciens strain GV3101 harboring pIG121-Hm was 13.3%. The copy number of transfer DNA integrated into the genome was either one or two in the four independent transgenic plants. Two of the four plants exhibited male sterility and did not produce self-pollinated seeds. Examination of the expression of the β-glucuronidase (GUS) gene in T1 plants from fertile T0 plants showed that the GUS genes were inherited. The improvement in the genetic transformation in this study might pave the way for accelerated molecular breeding and genetic analysis of radish.  相似文献   

20.
Seashore paspalum (Paspalum vaginatum O. Swartz) is an important warm-season turfgrass with great salinity tolerance. Based on establishment of embryogenic callus induction and regeneration from different mature seeds of ‘Sea Spray’, an Agrobacterium tumefaciens-mediated transformation was established and optimized in this study. Three clones of callus were selected for examining transformation conditions using Agrobacterium tumefaciens strain AGL1 carrying the binary vector pCAMBIA1305.2, containing β-glucuronidase (GUS) as a reporter gene and hygromycin phosphotransferase (HPT) as a selective marker gene. The results showed that a high transient transformation efficiency was observed by using Agrobacterium concentration of OD600?=?0.6, 5 min of sonication treatment during Agrobacterium infection, and 2 d of co-cultivation. By using the optimized transformation conditions, transgenic seashore paspalum plants were obtained. PCR and Southern blot analysis showed that T-DNA was integrated into the genomes of seashore paspalum. GUS staining experiments showed that the GUS gene was expressed in transgenic plants. Our results suggested that the transformation protocol will provide an effective tool for breeding of seashore paspalum in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号