首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The psychrotolerant Pseudoalteromonas issachenkonii PAMC 22718 was isolated for its high exo-acting chitinase activity in the Kara Sea, Arctic. An exo-acting chitinase (W-Chi22718) was homogeneously purified from the culture supernatant of PAMC 22718, the molecular weight of which was estimated to be approximately 112?kDa. Due to its β-N-acetylglucosaminidase activity, W-Chi22718 was able to produce N-acetyl-D-glucosamine (GlcNAc) monomers from chitin oligosaccharide substrates. W-Chi22718 displayed chitinase activity from 0 to 37°C (optimal temperature of 30°C) and maintained activity from pH 6.0 to 9.0 (optimal pH of 7.6). W-Chi22718 exhibited a relative activity of 13 and 35% of maximal activity at 0 and 10°C, respectively, which is comparable to the activities of previously characterized, cold-adapted bacterial chitinases. W-Chi22718 activity was enhanced by K+, Ca2+, and Fe2+, but completely inhibited by Cu2+ and SDS. We found that W-Chi22718 can produce much more (GlcNAcs) from colloidal chitin, working together with previously characterized cold-active endochitinase W-Chi21702. Genome sequencing revealed that the corresponding gene (chi22718_IV) was 2,856?bp encoding a 951?amino acid protein with a calculated molecular weight of approximately 102?kDa.  相似文献   

2.
A new chitinase gene, chi92, encoding the largest known chitinase from Streptomyces olivaceoviridisATCC 11238 was sequenced by means of different PCR-methods. The cloned gene was expressed in E. coliand the recombinant protein could be detected by Western-blot analysis. The multiplicity of chitinolytic enzymes of this strain is discussed.  相似文献   

3.
A novel strain exhibiting entomopathogenic and chitinolytic activity was isolated from mangrove marsh soil in India. The isolate was identified as Brevibacillus laterosporus by phenotypic characterization and 16S rRNA sequencing and designated Lak1210. When grown in the presence of colloidal chitin as the sole carbon source, the isolate produced extracellular chitinases. Chitinase activity was inhibited by allosamidin indicating that the enzymes belong to the family 18 chitinases. The chitinases were purified by ammonium sulfate precipitation followed by chitin affinity chromatography yielding chitinases and chitinase fragments with 90, 75, 70, 55, 45, and 25 kDa masses. Mass spectrometric analyses of tryptic fragments showed that these fragments belong to two distinct chitinases that are almost identical to two putative chitinases, a 89.6-kDa four-domain chitodextrinase and a 69.4-kDa two-domain enzyme called ChiA1, that are encoded on the recently sequenced genome of B. laterosporus LMG15441. The chitinase mixture showed two pH optima, at 6.0 and 8.0, and an optimum temperature of 70 °C. The enzymes exhibited antifungal activity against the phytopathogenic fungus Fusarium equiseti. Insect toxicity bioassays with larvae of diamondback moths (Plutella xylostella), showed that addition of chitinases reduced the time to reach 50 % mortality upon infection with non-induced B. laterosporus from 3.3 to 2.1 days. This study provides evidence for the presence of inducible, extracellular chitinolytic enzymes in B. laterosporus that contribute to the strain’s antifungal activity and insecticidal activity.  相似文献   

4.
An antagonistic bacillus S2BC-2 isolated from apple rhizosphere soil was identified to be highly chitinolytic on chitinase detection agar. Standard bacteriological tests and sequencing of 16S rRNA, and gyrA and rpoB genes, indicated a taxonomic affiliation of the strain to Bacillus atrophaeus. The strain was studied for its ability to grow and produce chitinase on different substrates. Bacterial cells grown on chitin-containing media showed enhanced growth and chitinase production with increased anti-fungal activity against vascular wilt pathogens. Extracellular proteins of cell-free extracts of media amended with chitin and fungal cell wall contained 4–10 novel polypeptides. In polyhouse (bamboo structures that provide protective shade made of polyvinyl sheet) studies, a chitin-supplemented talc-based formulation of the S2BC-2 challenge inoculated with Fusarium oxysporum f. sp. zingiberi recorded low percent disease indices of 84.9 % and 79.2 % for yellows and rhizome rot, respectively, over the non-bacterised pathogen control. The low disease incidences correlated with 113.3 % maximum rhizome production and 2-fold higher chitinase induction over the pathogen control. In native gel activity assays, upon challenge-inoculation, S2BC-2 expressed more chitinase isoforms than the pathogen control. The results suggest that chitinolytic B. atrophaeus can be used in the biocontrol of rhizome rot of ginger.  相似文献   

5.
Plant disease caused by fungal pathogens results in vast crop damage globally. Microbial communities of soil that is suppressive to fungal crop disease provide a source for the identification of novel enzymes functioning as bioshields against plant pathogens. In this study, we targeted chitin-degrading enzymes of the uncultured bacterial community through a functional metagenomics approach, using a fosmid library of a suppressive soil metagenome. We identified a novel bacterial chitinase, Chi18H8, with antifungal activity against several important crop pathogens. Sequence analyses show that the chi18H8 gene encodes a 425-amino acid protein of 46 kDa with an N-terminal signal peptide, a catalytic domain with the conserved active site F175DGIDIDWE183, and a chitinase insertion domain. Chi18H8 was expressed (pGEX-6P-3 vector) in Escherichia coli and purified. Enzyme characterization shows that Chi18H8 has a prevalent chitobiosidase activity with a maximum activity at 35 °C at pH lower than 6, suggesting a role as exochitinase on native chitin. To our knowledge, Chi18H8 is the first chitinase isolated from a metagenome library obtained in pure form and which has the potential to be used as a candidate agent for controlling fungal crop diseases. Furthermore, Chi18H8 may also answer to the demand for novel chitin-degrading enzymes for a broad range of other industrial processes and medical purposes.  相似文献   

6.
《Insect Biochemistry》1989,19(2):123-128
The appearance of chitinolytic enzymes, chitinase and β-N-acetylglucosaminidase, involved in ecdysis of the silkworm, Bombyx mori, was investigated using integuments prepared from fifth instar larvae during and after spinning behavior just before the larval-pupal transformation. β-N-Acetylglucosaminidase activity appeared a day after the beginning of spinning (SP1) and gradually increased for 2 more days (SP3), while chitinase activity appeared later at the SP3 stage (1 day before the ecdysis). It was shown by immunoblotting that the changes in activity were due to increases in the amounts of enzymes present. A probable zymogenic form of chitinase, whose molecular weight was about 215 kDa, was detected during spinning period by immunoblotting using anti-65-kDa chitinase antibody. The zymogen was observed 2 days before the appearance of enzyme activity. High molecular proteins (120–190 kDa) related to β-N-acetylglucosaminidase were also observed throughout the spinning period by immunoblotting, but this appearance pattern was different from that of chitinase. The results support, at least in the case of chitinase the hypothesis, that insect chitinolytic enzymes are synthesized as inactive precursors which are activated by limited proteolysis.  相似文献   

7.

Objective

To ascertain the effect of chitin-binding domain (ChBD) and fibronectin type III domain (FN3) on the characterization of the intact chitinase from Bacillus thuringiensis.

Results

An intact chitinase gene (chi74) from B. thuringiensis HZP7 and its truncated genes (chi54, chi63 and chi66) were expressed in Escherichia coli BL21. The expression products were analyzed after purification. All chitinases were active from pH 4–7.5 and from 20 to 80 °C with identical optimal: pH 5.5 and 60 °C. The activity of colloid chitin degradation for Chi74 was the highest, followed by Chi66, Chi63 and Chi54. Ag+ reduced the activity of Chi74, Chi54, Chi63 and Chi66, but Mg2+ enhanced them. The effect of Ag+ and Mg2+ was more significant on the activity of Chi54 than on the activities of Chi63, Chi66 and Chi74.

Conclusion

ChBDChi74 and FN3Chi74 domains play a role in exerting enzymatic activity and can improve the stability of chitinase.
  相似文献   

8.
A gene encoding a novel chitinase chi58 was cloned from the fungus Chaetomium cupreum by using inverse PCR. The DNA sequence of chi58 contains a 1,602 bp open reading frame and two introns that are 52 and 201 bp in length. Regarding our in silico analysis, chi58 is a modular enzyme composed of a family-18 catalytic domain, which is responsible for chitinase activity, and a chitin-binding domain containing several cysteines. Apparently, the function of these domains is to anchor the enzyme tightly onto the large insoluble polymeric substrate. Chi58 has a pI of 4.47 and a deduced molecular mass of 58 kDa. The optimal pH and temperature conditions were determined to be 5.8 and 45°C, respectively, when colloidal chitin was used as the substrate. SDS-PAGE and zymogram analyses indicated the presence of a single active chitinase. Cells with pPIC9K-chi58 produced an extracellular chitinase that had an activity of 39 U/ml protein. Metal ions such as Ba2+, Mg2+, K+, Cu2+, Fe3+, Zn2+, and Co2+ also influenced the activity of the recombinant enzyme.  相似文献   

9.
The deep-sea water of the South Pacific Gyre (SPG, 20°S–45°S) is a cold and ultra-oligotrophic environment that is the source of cold-adapted enzymes. However, the characteristic features of psychrophilic enzymes derived from culturable microbes in the SPG remained largely unknown. In this study, the degradation properties of 174 cultures from the deep water of the SPG were used to determine the diversity of cold-adapted enzymes. Thus, the abilities to degrade polysaccharides, proteins, lipids, and DNA at 4, 16, and 28 °C were investigated. Most of the isolates showed one or more extracellular enzyme activities, including amylase, chitinase, cellulase, lipase, lecithinase, caseinase, gelatinase, and DNase at 4, 16, and 28 °C. Moreover, nearly 85.6 % of the isolates produced cold-adapted enzymes at 4 °C. The psychrophilic enzyme-producing isolates distributed primarily in Alteromonas and Pseudoalteromonas genera of the Gammaproteobacteria. Pseudoalteromonas degraded 9 types of macromolecules but not cellulose, Alteromonas secreted 8 enzymes except for cellulase and chitinase. Interestingly, the enzymatic activities of Gammaproteobacteria isolates at 4 °C were higher than those observed at 16 or 28 °C. In addition, we cloned and expressed a gene encoding an α-amylase (Amy2235) from Luteimonas abyssi XH031T, and examined the properties of the recombinant protein. These cold-active enzymes may have huge potential for academic research and industrial applications. In addition, the capacity of the isolates to degrade various types of organic matter may indicate their unique ecological roles in the elemental biogeochemical cycling of the deep biosphere.  相似文献   

10.
Bacillus thuringiensis subsp. kurstaki BUPM255 secretes a chitobiosidase Chi255 having an expected molecular weight of 70.665 kDa. When the corresponding gene, chi255, was expressed in E. coli, the active form, extracted from the periplasmic fraction of E. coli/pBADchi255, was of about 54 kDa, which suggested that Chi255 was excessively degraded by the action of E. coli proteases. Therefore, in vitro progressive C-terminal Chi255 deleted derivatives were constructed in order to study their stability and their activity in E. coli. Interestingly, when the chitin binding domain (CBD) was deleted from Chi255, an active form (Chi2555Δ5) of expected size of about 60 kDa was extracted from the E. coli periplasmic fraction, without the observation of any proteolytic degradation. Compared to Chi255, Chi255Δ5 exhibited a higher chitinase activity on colloidal chitin. Both of the enzymes exhibit activities at broad pH and temperature ranges with maximal enzyme activities at pH 5 and pH 6 and at temperatures 50°C and 40°C, respectively for Chi255 and Chi255Δ5. Thus, it was concluded that the C-terminal deletion of Chi255 CBD might be a nice tool for avoiding the excessive chitinase degradation, observed in the native chitinase, and for improving its activity.  相似文献   

11.
Directed evolution for increased chitinase activity   总被引:3,自引:0,他引:3  
Directed evolution through DNA shuffling and screening was used to enhance the catalytic ability of a fungal, Beauveria bassiana, chitinase, Bbchit1. The Bbchit gene was first linked to various prokaryotic signal sequences and expressed in Escherichia coli. The signal peptide, PelB, from Erwinia carotovora resulted in greatest chitinase secretion into broth. The nucleotide sequence expressing PelB signal peptide was then incorporated into an E. coli vector to express Bbchit1 variants generated by three rounds of DNA shuffling. A Bbchit1 library with 150,000 variants was constructed with a nucleotide point mutation frequency of 0.6% and screened for chitinolytic activity. Two Bbchit1 variants (SHU-1 and SHU-2) were selected that showed increased chitinolytic activity compared to the wild type. Sequence analysis of these variants revealed mutations in amino acid residues that would not normally be considered for rational design of improved chitinase activity. The amino acid substitutions occurred outside of the two putative substrate-binding sites and the catalytic region.  相似文献   

12.
Acidic mammalian chitinase (AMCase) has been shown to be associated with asthma in mouse models, allergic inflammation and food processing. Here, we describe an E. coli-expression system that allows for the periplasmic production of active AMCase fused to Protein A at the N-terminus and V5 epitope and (His)6 tag (V5-His) at the C-terminus (Protein A-AMCase-V5-His) in E. coli. The mouse AMCase cDNA was cloned into the vector pEZZ18, which is an expression vector containing the Staphylococcus Protein A promoter, with the signal sequence and truncated form of Protein A for extracellular expression in E. coli. Most of the Protein A-AMCase-V5-His was present in the periplasmic space with chitinolytic activity, which was measured using a chromogenic substrate, 4-nitrophenyl N,N′-diacetyl-β-D-chitobioside. The Protein A-AMCase-V5-His was purified from periplasmic fractions using an IgG Sepharose column followed by a Ni Sepharose chromatography. The recombinant protein showed a robust peak of activity with a maximum observed activity at pH 2.0, where an optimal temperature was 54°C. When this protein was preincubated between pH 1.0 and pH 11.0 on ice for 1 h, full chitinolytic activity was retained. This protein was also heat-stable till 54°C, both at pH 2.0 and 7.0. The chitinolytic activity of the recombinant AMCase against 4-nitrophenyl N,N′-diacetyl-β-D-chitobioside was comparable to the CHO-expressed AMCase. Furthermore, the recombinant AMCase bound to chitin beads, cleaved colloidal chitin and released mainly N,N′-diacetylchitobiose fragments. Thus, the E. coli-expressed Protein A-mouse AMCase-V5-His fusion protein possesses chitinase functions comparable to the CHO-expressed AMCase. This recombinant protein can be used to elucidate detailed biomedical functions of the mouse AMCase.  相似文献   

13.
Trichoderma fungi have been intensively studied for mycoparasitism, and the latter is closely related to their cell-wall degrading enzymes including chitinase. Here, we studied marine-derived Trichoderma spp., isolated from distinct sources and locations, for chitinolytic and antifungal activity. Based on morphological and phylogenetic analyses, two strains designated GJ-Sp1 and TOP-Co8 (isolated from a marine sponge and a marine alga, respectively) were identified as Trichoderma bissettii. This species has recently been identified as a closely related species to Trichoderma longibrachiatum. The extracellular crude enzymes of GJ-Sp1 and TOP-Co8 showed activities of chitobiosidase and β-N-acetylglucosaminidase (exochitinase) and chitotriosidase (endochitinase). The optimum chitinolytic activity of the crude enzymes was observed at 50 °C, pH 5.0, 0–0.5% NaCl concentrations, and the activities were stable at temperatures ranging from 10 to 40 °C for 2 h. Moreover, the crude enzymes showed inhibitory activity against hyphal growth of two filamentous fungi Aspergillus flavus and Aspergillus niger. To the best of our knowledge, this is the first report of the chitinolytic and antifungal activity of T. bissettii.  相似文献   

14.
Aeromonas caviae CB101 secretes four chitinases (around 92, 82, 70, and 55 kDa) into the culture supernatant. A chitinase gene chi1 (92 kDa) was previously studied. To identify the genes encoding the remaining three chitinases, a cosmid library of CB101 was constructed to screen for putative chitinase genes. Nine cosmid clones were shown to contain a chitinase gene on chitin plates. Surprisingly, all the positive clones contained chi1. In parallel, we purified the 55-kDa chitinase (Chi55) from the CB101 culture supernatant by continuous DEAE-Sepharose and Mono-Q anion exchange chromatography. The N-terminal amino acid sequence of the purified chitinase exactly matched the N-terminal sequence of mature Chi1, indicating that the purified chitinase (Chi55) is a truncated form of Chi1. The N- and C-terminal domains of chi1 were cloned, expressed, and purified, separately. Western blots using anti-sera to the N- and C-terminal domains of chi1 on the chitinases of CB101 showed that the four chitinases in the culture supernatant are either chi1 or C-terminal truncations of Chi1. In addition, the CB101 chi1 null mutant showed no chitinolytic activity, while CB101 chi1 null mutant complemented by pUC19chi1 containing chi1 showed all four chitinases in gel activity assay. These data indicated that all four chitinases secreted by CB101 in the culture supernatant are the product of one chitinase gene chi1.  相似文献   

15.
Pseudomonas, being the common inhabitant of colder environments, are suitable for the production of cold-active enzymes. In the present study, a newly isolated strain of Pseudomonas from cold desert site in Indian Himalayan Region, was investigated for the production of cold-active lipase. The bacteria were identified as Pseudomonas proteolytica by 16S rDNA sequencing. Lipase production by bacteria was confirmed by qualitative assay using tributyrin and rhodamine-B agar plate method. The bacterium produced maximum lipase at 25 °C followed by production at 15 °C while utilizing olive, corn, as well as soybean oil as substrate in lipase production broth. Enzyme produced by bacteria was partially purified using ammonium sulphate fractionation. GBPI_Hb61 showed aggregation behaviour which was confirmed using several techniques including gel filtration chromatography, dynamic light scattering, and native PAGE. Molecular weight determined by SDS-PAGE followed by in-gel activity suggested two lipases of nearly similar molecular weight of ~50 kDa. The enzyme showed stability in wide range of pH from 5 to 11 and temperature up to 50 °C. The enzyme from GBPI_Hb61 exhibited maximum activity toward p-nitrophenyldecanoate (C10). The stability of enzyme was not affected with methanol while it retained more than 75% activity when incubated with ethanol, acetone, and hexane. The bacterium is likely to be a potential source for production of cold-active lipase with efficient applicability under multiple conditions.  相似文献   

16.
Cold active esterases are a class of important biocatalysts that exhibit high activity at low temperatures. In this study, a search for putative cold-active esterase encoding genes from Monascus ruber M7 was performed. A cold-active esterase, named Lip10, was isolated, cloned, purified, and characterized. Amino acid sequence analysis reveals that Lip10 contained a conserved sequence motif Gly173-Xaa-Ser175-Xaa-Gly177 that is also present in the majority of esterases and lipases. Phylogenetic analysis indicated that Lip10 was a novel microbial esterase. The lip10 gene was cloned and heterologously expressed in Escherichia coli BL21(DE3), resulting in the expression of an active and soluble protein that constituted 40 % of the total cell protein content. Lip10 maintained almost 50 % of its maximal activity at 4–10 °C, with optimal activity at 40 °C. Furthermore, Lip10 retained 184–216 % of its original activity, after incubation in 50 % (v/v) hydrophobic organic solvents for 24 h. The enzyme also exhibited high activity under alkaline conditions and good tolerance to metal ions in the reaction mixture. These results indicate that Lip10 may have potential uses in chemical synthesis and food processing industrial applications as an esterase.  相似文献   

17.
《Insect Biochemistry》1991,21(3):277-284
The appearance of chitinolytic enzymes, chitinase and β-N-acetylglucosaminidase, in integuments of fifth-larval instars of the silkworm, Bombyx mori, was investigated by injection of 20-hydroxyecdysone into the hemolymph of the ligated larvae, and by topical application of an imidazole compound (KK-42, 1-benzyl-5[(E)-2,6-dimethyl-1,5-heptadienyl] imidazole) along the dorsal vessel of the larvae at the beginning of spinning behavior. 20-Hydroxyecdysone induced both enzyme activities. However, the induction patterns were different between two types of chitinolytic enzymes. Chitinase was rapidly induced only by high hormone levels (30 μg/insect, 7.5 μg/g live wt) and soon decreased, while β-N-acetylglucosaminidase was gradually induced even by low hormone levels (6 μg/insect, 1.5 μg/g live wt). KK-42 suppressed both the larval-pupal transformation and appearance of chitinolytic enzymes. Application of KK-42 (50 μg/insect) caused 1-day delay in β-N-acetylglucosaminidase and 2-day delay in chitinase. It was shown by immunoblotting and activity staining that the appearance of the enzyme activities was associated with that of the respective enzyme molecules. The molecular species of β-N-acetylglucosaminidase appeared was mainly the 67.5 kDa subunit. In the case of chitinase, several molecular species including active forms (88 and 65 kDa) and zymogenic form (about 215 kDa) were observed. These results suggest that β-N-acetylglucosaminidase is induced in an active form by relatively low ecdysteroid levels, whereas chitinase is induced through activation of the zymogen by higher levels of hormone.  相似文献   

18.
Chitobiase (CHB) is an important enzyme for the production of N-acetyl-d-glucosamine from the chitin biopolymer in the series of chitinolytic enzymes. Majority of over-expressed CHB (58 %) in E. coli expression system led to formation of inclusion bodies. The production and soluble yield of active CHB was enhanced by co-expression with GroEL/ES chaperonin, optimizing culture conditions and solubilization followed by refolding of remaining inactive chitobiase present in the form of inclusion bodies. The growth of recombinant E. coli produced 42 % CHB in soluble form and the rest (~58 %) as inclusion bodies. The percentage of active CHB was enhanced to 71 % by co-expression with GroEL/ES chaperonin system and optimizing culture conditions (37 °C, 200 rpm, IPTG—0.5 mM, l-arabinose—13.2 mM). Of the remaining inactive CHB present in inclusion bodies, 37 % could be recovered in active form using pulsatile dilution method involving denaturants (2 M urea, pH 12.5) and protein refolding studies (1.0 M l-arginine, 5 % glycerol). Using combinatorial approach, 80 % of the total CHB expressed, could be recovered from cells grown in one litre of LB medium is a step forward in replacing hazardous chemical technology by biotechnological process for the production of NAG from chitinous waste.  相似文献   

19.
Aspergillus niger LOCK 62 produces an antifungal chitinase. Different sources of chitin in the medium were used to test the production of the chitinase. Chitinase production was most effective when colloidal chitin and shrimp shell were used as substrates. The optimum incubation period for chitinase production by Aspergillus niger LOCK 62 was 6?days. The chitinase was purified from the culture medium by fractionation with ammonium sulfate and affinity chromatography. The molecular mass of the purified enzyme was 43?kDa. The highest activity was obtained at 40?°C for both crude and purified enzymes. The crude chitinase activity was stable during 180?min incubation at 40?°C, but purified chitinase lost about 25?% of its activity under these conditions. Optimal pH for chitinase activity was pH 6–6.5. The activity of crude and purified enzyme was stabilized by Mg2+ and Ca2+ ions, but inhibited by Hg2+ and Pb2+ ions. Chitinase isolated from Aspergillus niger LOCK 62 inhibited the growth of the fungal phytopathogens: Fusarium culmorum, Fusarium solani and Rhizoctonia solani. The growth of Botrytis cinerea, Alternaria alternata, and Fusarium oxysporum was not affected.  相似文献   

20.
In plants, various chitinases have been identified and categorized into several groups based on the analysis of their sequences and domains. We have isolated SafchiA, a novel class of chitinase from saffron (Crocus sativus L.). The cDNA encoding SafchiA is mainly expressed in roots and corms, and its expression is induced by elicitor treatment, methyl jasmonate, wounding, and by the fungi Fusarium oxysporum, Beauveria and Phoma sp., suggesting a defence role of the protein. Furthermore, in vitro assays with the recombinant native protein showed chitinolytic, and antifungal activity. The deduced protein shares high similarity with chitinases belonging to family 19 of glycosyl-hydrolases, although some changes in the enzyme active site are present. To explore the properties of SafchiA we have expressed recombinant SafchiA in Escherichia coli and generated four different mutants affected in residues involved in the catalytic activity. One glutamic acid essential for family 19 chitinases activity is not present in C. sativus chitinase suggesting that only one acidic residue is necessary for the enzyme activity, in a similar manner as family 18 glycosyl-hydrolases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号