首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characterization of a mini ColE1 cloning vector.   总被引:4,自引:0,他引:4  
H Avni  A Markovitz 《Plasmid》1979,2(2):225-236
Plasmid pHA105 (formerly pAC105), a mini ColE1 plasmid containing one restriction endonuclease EcoRI site, was further characterized using restriction endonuclease analysis thereby revealing its relationship to ColE1. The polypeptides specified by plasmid pHA105 in minicells are of low molecular weight making it a useful plasmid to define cloned polypeptides larger than 16,000 daltons and its use for that purpose was demonstrated. pHA105 was used to clone two different sized fragments of DNA containing the gal operon. pHA105 was also used to reclone a 2 Mdal fragment of DNA that, when expressed, represses the synthesis of capsular polysaccharide. The repression of polysaccharide synthesis was expressed when a plasmid containing one molecule each of pHA105 and the 2 Mdal fragment was prepared (pFM100). In contrast, a plasmid containing two copies of pHA105 and one of the 2 Mdal fragment (pHA138) did not repress polysaccharide synthesis. The results demonstrate that expression of a cloned fragment gene may be prevented in certain arrangements of the vector and cloned fragment. Plasmid pHA105 fails to exhibit relaxation after treatment with sodium dodecyl sulfate in contrast to ColE1 treated in the same way. pHA105 replicates as a dimer form while ColE1 usually does not. A hypothesis that a function of a DNA-protein complex is required for monomeric DNA circle formation is discussed.  相似文献   

2.
Plasmids containing small deletions within a tetracycline (Tc) resistance gene(s) of plasmid pHA121 were isolated. Plasmid pHA121 was formed by ligating the EcoRI-digested Tc resistance plasmid pSC101 and similarly digested mini-ColE1 plasmid pHA105. The DNA deletion plasmids were constructed by digesting plasmid pHA121 DNA with the restriction endonucleases BamH1 and Sal1 and, in addition, λ exonuclease. Two plasmids, designated pJT131 and pJT133, had small deletions of approximately 0.64 to 0.8 kb and a comparison of the radioactive polypeptides synthesized in plasmid-containing minicells revealed that a 34-kdal polypeptide was not specified by either pJT131 or pJT133. We conclude that the 34-kdal polypeptide is required for the expression of Tc resistance and that its structural gene probably maps in the deleted region of pSC101 DNA.  相似文献   

3.
Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs) may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO) and magnetite (Fe3O4) nanosized (<50 nm) particles. Two different soil types were examined: a sandy loam (Bet-Dagan) and a sandy clay loam (Yatir), under two ENP concentrations (1%, 0.1%). Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in different soils interact with the ENPs and reduce their toxicity.  相似文献   

4.
The present study deals with isolation and characterization of copper oxide nanoparticles resistant Pseudomonas strains that were isolated from the soil collected from mining and refining sites of Sarcheshmeh copper mine in the Kerman Province of Iran. The three isolates were selected based on high level of copper oxide nanoparticles (CuO NPs) resistance. The isolates were authentically identified as Pseudomonas fluorescens CuO-1, Pseudomonas fluorescens CuO-2 and Pseudomonas sp. CuO-3 by morphological, biochemical and 16S rDNA gene sequencing analysis. The growth pattern of these isolates with all the studied CuO NPs concentrations was similar to that of control (without CuO NPs) indicating that CuO NPs would not affect the growth of isolated strains. A reduction in the amount of exopolysaccharides was observed after CuO NPs—P. fluorescens CuO-1 culture supernatant interaction. The Fourier transform infrared spectroscopy (FT-IR) peaks for the exopolysaccharides extracted from the bacterial culture supernatant and the interacted CuO NPs were almost similar. The exopolysaccharide capping of the CuO NPs was confirmed by FT-IR and X-ray diffraction analysis. The study of bacterial exopolysaccharides capped CuO NPs with E. coli PTCC 1338 and S. aureus PTCC 1113 showed less toxicity compared to uncoated CuO NPs. Our study suggests that the capping of nanoparticles by bacterially produced exopolysaccharides serve as the probable mechanism of tolerance.  相似文献   

5.
《Process Biochemistry》2010,45(1):81-87
In the present attempt a method for the immobilization of acetylcholine esterase (AChE) was developed. In this method, the enzyme was immobilized onto a ceramic cylinder support using a sol–gel–multiwall carbon nanotube (MWCNT) composite. Response surface methodology (RSM) was used for the design and analysis of immobilization experiments. Quadratic mathematical model equations were derived for the prediction of enzyme activity. Then the effects on enzyme activity at 30, 40 and 50 min after process initiation of varying each of two parameters over five levels were investigated. These parameters were the AChE:MWCNT ratio (X1), and AChE–MWCNT:sol–gel ratio (X2). The optimum values of X1 and X2 for the immobilization of AChE on ceramic packing were found to be 1.07 and 0.43, respectively. Using these optimum parameters it was shown that enzyme immobilization with MWCNTs and sol–gel was more effective than immobilization with sol–gel or graphite and sol–gel. Scanning electron microscopic (SEM) images revealed a porous surface comprised of MWCNT–AChE encapsulated in sol–gel. Furthermore, the system was highly reproducible with standard deviations after three successive assays of 1.88%, 2.11% and 2.13% at 30, 40 and 50 min after process initiation, respectively.  相似文献   

6.
We report the results of studies relating to the in situ synthesis of a novel ternary NiFe2O4/CuO/FeO-chitosan nanocomposite, which could be utilized as a cholesterol biosensor. The phase identification, morphology and particle size of the NiFe2O4/CuO/FeO nanocomposite have been investigated via X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscope (HR-TEM) and Fourier transform infrared (FTIR) spectroscopy. The quantification of cholesterol was accomplished by immobilizing cholesterol oxidase (ChOx) onto a chitosan-NiFe2O4/CuO/FeO nanocomposite (NiFe2O4/CuO/FeO-CH NC) deposited onto an indium-tin-oxide (ITO) glass substrate via the sol–gel technique. The electrochemical study results of the biocompatible ChOx/NiFe2O4/CuO/FeO-CH/ITO electrode reveal good linearity (50–5000 mg/L), a low detection limit (313 mg/L), high sensitivity (0.043 μA/(mg/L cm?2)), a fast response time (10 s) and a shelf-life of 3 months. The low Michaelis–Menten constant (Km) of 80 mg/L (0.21 mM) indicates the high affinity of ChOx for the analytes. Further, this bioelectrode has been used in clinical applications to estimate cholesterol levels with negligible interference (2%) from analytes present in human serum samples.  相似文献   

7.
Metallic implants, especially titanium implants, are widely used in clinical applications. Tissue in-growth and integration to these implants in the tissues are important parameters for successful clinical outcomes. In order to improve tissue integration, porous metallic implants have being developed. Open porosity of metallic foams is very advantageous, since the pore areas can be functionalized without compromising the mechanical properties of the whole structure. Here we describe such modifications using porous titanium implants based on titanium microbeads. By using inherent physical properties such as hydrophobicity of titanium, it is possible to obtain hydrophobic pore gradients within microbead based metallic implants and at the same time to have a basement membrane mimic based on hydrophilic, natural polymers. 3D pore gradients are formed by synthetic polymers such as Poly-L-lactic acid (PLLA) by freeze-extraction method. 2D nanofibrillar surfaces are formed by using collagen/alginate followed by a crosslinking step with a natural crosslinker (genipin). This nanofibrillar film was built up by layer by layer (LbL) deposition method of the two oppositely charged molecules, collagen and alginate. Finally, an implant where different areas can accommodate different cell types, as this is necessary for many multicellular tissues, can be obtained. By, this way cellular movement in different directions by different cell types can be controlled. Such a system is described for the specific case of trachea regeneration, but it can be modified for other target organs. Analysis of cell migration and the possible methods for creating different pore gradients are elaborated. The next step in the analysis of such implants is their characterization after implantation. However, histological analysis of metallic implants is a long and cumbersome process, thus for monitoring host reaction to metallic implants in vivo an alternative method based on monitoring CGA and different blood proteins is also described. These methods can be used for developing in vitro custom-made migration and colonization tests and also be used for analysis of functionalized metallic implants in vivo without histology.  相似文献   

8.
Pinus kesiya Royle needles and Tectona grandis L. leaves were exposed in a freshwater lake at three stations and at different depths for a period of 600 days using plastic net bags (1 mm pore size). The fungal and bacterial populations associated with the two litters were estimated at periodic intervals. Rapid initial colonization (up to 100 days) and a lowering of populations after 200–300 days, followed by another peak after 400–500 days were noted. Both fungi and bacteria followed almost similar trends of population variation. Litter at the shallow stations harboured more fungi and bacteria. The species composition of fungi varied with time. The possible role of terrestrial fungi in aquatic habitats is discussed.  相似文献   

9.
The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag–TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.  相似文献   

10.
11.

Background

The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional bone tissues. Adding bioactive materials can improve new bone formation and better osseointegration. Three types of titanium (Ti) implants were tested for in vitro biocompatibility in this comparative study: Ti6Al7Nb implants with 25% total porosity used as controls, implants infiltrated using a sol–gel method with hydroxyapatite (Ti HA) and silicatitanate (Ti SiO2). The behavior of human osteoblasts was observed in terms of adhesion, cell growth and differentiation.

Results

The two coating methods have provided different morphological and chemical properties (SEM and EDX analysis). Cell attachment in the first hour was slower on the Ti HA scaffolds when compared to Ti SiO2 and porous uncoated Ti implants. The Alamar blue test and the assessment of total protein content uncovered a peak of metabolic activity at day 8–9 with an advantage for Ti SiO2 implants. Osteoblast differentiation and de novo mineralization, evaluated by osteopontin (OP) expression (ELISA and immnocytochemistry), alkaline phosphatase (ALP) activity, calcium deposition (alizarin red), collagen synthesis (SIRCOL test and immnocytochemical staining) and osteocalcin (OC) expression, highlighted the higher osteoconductive ability of Ti HA implants. Higher soluble collagen levels were found for cells cultured in simple osteogenic differentiation medium on control Ti and Ti SiO2 implants. Osteocalcin (OC), a marker of terminal osteoblastic differentiation, was most strongly expressed in osteoblasts cultivated on Ti SiO2 implants.

Conclusions

The behavior of osteoblasts depends on the type of implant and culture conditions. Ti SiO2 scaffolds sustain osteoblast adhesion and promote differentiation with increased collagen and non-collagenic proteins (OP and OC) production. Ti HA implants have a lower ability to induce cell adhesion and proliferation but an increased capacity to induce early mineralization. Addition of growth factors BMP-2 and TGFβ1 in differentiation medium did not improve the mineralization process. Both types of infiltrates have their advantages and limitations, which can be exploited depending on local conditions of bone lesions that have to be repaired. These limitations can also be offset through methods of functionalization with biomolecules involved in osteogenesis.
  相似文献   

12.
The potential environmental toxicities of several metal oxide nanoparticles (NPs; CuO, TiO2, NiO, Fe2O3, ZnO, and Co3O4) were evaluated in the context of bioluminescence activity, seed germination, and bacterial gene mutation. The bioassays exhibited different sensitivities, i.e., each kind of NP exhibited a different level of toxicity in each of the bioassays. However, with a few exceptions, CuO and ZnO NPs had most toxic for germination of Lactuca seed (EC50 0.46 mg CuO/l) and bioluminescence (EC50 1.05 mg ZnO/l). Three NPs (Co3O4, TiO2, and Fe2O3) among all tested concentrations (max. 1,000 mg/l) showed no inhibitory effects on the tested organisms, except for Co3O4 NPs on bioluminescence activity (EC50 62.04 mg/l). The sensitivity of Lactuca seeds was greater than that of Raphanus seeds (EC50 0.46 mg CuO/l versus 26.84 mg CuO /l ). The ranking of metal toxicity levels on bioluminescence was in the order of ZnO?>?CuO?>?Co3O4?>?NiO?>?Fe2O3, TiO2, while CuO?>?ZnO?>?NiO?>?Co3O4, Fe2O3, TiO2 on germination. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under any tested condition. These findings demonstrate that several bioassays, as opposed to any single one, are needed for the accurate assessment of NP toxicity on ecosystems.  相似文献   

13.
In the present report, we propose a novel approach to synthesize DNA microarrays that employs immobilization of the nucleic acid molecules onto zinc and iron oxide surfaces through their phosphate backbone. Oxide films were prepared by the sol–gel technique and the resulting surfaces were characterized especially with respect to surface chemistry and morphological features by both X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). ZnO films annealed at T ? 300 °C show the most promising surface features to be employed for DNA microarray preparation, i.e. high density of binding sites (hydroxyl groups), smooth and homogeneous surfaces, high optical transmittance in the visible spectral range suitable for detection using fluorescence, and easy handling during preparation procedures. The analysis of nucleic acid retention on the oxide layers was performed by the scanning of dye-labelled DNA previously printed on the substrate using the DNA microarray robotic arm. Clearly visible spots with regular shape were revealed above the background noise indicating that anchoring of the DNA on the treated surface is efficient and does not interfere with hybridization processes. The use of suitably engineered zinc oxide film makes the immobilization strategy ideal for facile, efficient, and cost-effective manufacturing of DNA microarrays.  相似文献   

14.
The immobilization of lipases within sol–gel derived silica, using multi-walled carbon nanotubes (MWNTs) as additives in order to protect the inactivation of lipase during sol–gel process and to enhance the stability of lipase, was investigated. Three sol–gel immobilized lipases (Candida rugosa, Candida antarctica type B, Thermomyces lanuginosus) with 0.33% (w/w) MWNT showed much higher activities than lipase immobilized without MWNT. The influence of MWNT content and MWNT shortened by acid treatment in the sol–gel process on the activity and stability of immobilized C. rugosa lipase was also studied. In hydrolysis reaction, immobilized lipase containing 1.1% pristine MWNT showed 7 times higher activity than lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT showed 10 times higher activity in esterification reaction, compared with lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT retained 96% of initial activity after 5 times reuse, while the lipase immobilized without MWNT was fully inactivated under the same condition.  相似文献   

15.
The disubstituted dimethyldiethoxysilane (DMDEOS), methyl(phenyl)diethoxysilane (MPDEOS) and diphenyldiethoxysilane (DPDEOS) were used in binary silane precursor systems in combination with tetraethoxysilane (TEOS) for the immobilization of lipase from Pseudomonas fluorescens (Lipase AK). In addition, ternary silane precursor systems with TEOS and octyltriethoxysilane (OTEOS) or phenyltriethoxysilane (PTEOS) were also studied for encapsulation. The best performing ternary sol–gel preparations (418–736% activity yields of the immobilized enzyme with 1-phenylethanol rac-1a as compared to the native form) were tested as biocatalysts for kinetic resolutions of rac-1a, 1-phenylpropan-2-ol rac-1b and 4-phenylbutan-2-ol rac-1c. Because the catalytic properties and the operational stability of the DMDEOS-containing preparations proved to be superior to all the tested free and sol–gel entrapped Lipase AK biocatalysts in batch mode, the kinetic resolutions of rac-1a and rac-1b were performed with the TEOS/PTEOS/DMDEOS 4:1:1 Lipase AK in a continuous-flow reactor as well.  相似文献   

16.
Polychlorinated biphenyls (PCBs) are carcinogenic, persistent, and bioaccumulative contaminants that pose risks to human and environmental health. In this study, we evaluated the PCB biodegradation of sediments from Indiana Harbor and Ship Canal (IHSC), a PCB-contaminated site (average PCB concentration = 12,570 ng/g dw). PCB congener profiles and bacterial community structure in a core sediment sample (4.57 m long) were characterized. Analysis of vertical PCB congener profile patterns in sediment and pore water strongly suggests that in situ dechlorination occurred in sediments. However, 16S rRNA genes from putative PCB-dechlorinating Chloroflexi were relatively more abundant in upper 2 m sediments, as were genes indicative of aerobic biodegradation potential (i.e. biphenyl dioxygenase (bphA)). Characterization of the bacterial community by terminal restriction fragment length polymorphism and comparison of these with sediment and pore water PCB congener profiles with the Mantel test revealed a statistical correlation (p < 0.001). Sequences classified as Acinetobacter and Acidovorax were highly abundant in deep sediments. Overall, our results suggest that PCB dechlorination has already occurred, and that IHSC sediments have the potential for further aerobic and anaerobic PCB biodegradation.  相似文献   

17.
Haloalkane dehalogenases catalyze the hydrolytic cleavage of carbon–halogen bonds in a broad range of environmental pollutants such as aliphatic mono-, di-, and polyhalogenated alkanes. From the biotechnology point of view haloalkane dehalogenases attract attention because of many potential uses for the bioremendation of soil, water and air. In the present study, different Rhizobium strains (Sinorhizobium meliloti 1021, Rhizobium leguminosarum bv. trifolii, Mesorhizobium loti MAFF, Bradyrhizobium japonicum usda 110) were screened for their ability to produce stable and active 1,2-dibromoethane-degrading dehalogenase. The results showed that B. japonicum produces the most potent dehalogenase. This enzyme was cloned, expressed in Escherichia coli BL21(DE3), purified and was entrapped in tetraethylorthosilicate derived sol–gel. The tetraethylorthosilicate sol–gel entrapped haloalkane dehalogenases exhibited higher storage and operational stability at 4 °C and 25 °C, compared to the free enzyme. Kinetic analysis of the entrapped enzyme using 1,2-dibromoethane showed that substrate turnover was limited by partitioning effects or diffusion through the sol–gel matrix. The biocatalyst was used in a packed bed bioreactor for the biodegradation of 1,2-DBE. Under selected conditions the sol–gel entrapped dehalogenase was able to hydrolyze 91.8% of the loaded 1,2-DBE, within 16.7 h. The results of the present study suggest that the use of HLD biocatalysis may provide a ‘green chemistry’ tool for sustainable remediation of 1,2-DBE.  相似文献   

18.

Introduction

Prosthetic mesh infection constitutes one of the major complications following hernia repair. Antimicrobial, non-antibiotic biomaterials have the potential to reduce bacterial adhesion to the mesh surface and adjacent tissues while avoiding the development of novel antibiotic resistance. This study assesses the efficacy of presoaking reticular polypropylene meshes in chlorhexidine or a chlorhexidine and allicin combination (a natural antibacterial agent) for preventing bacterial infection in a short-time hernia-repair rabbit model.

Methods

Partial hernia defects (5 x 2 cm) were created on the lateral right side of the abdominal wall of New Zealand White rabbits (n = 21). The defects were inoculated with 0.5 mL of a 106 CFU/mL Staphylococcus aureus ATCC25923 strain and repaired with a DualMesh Plus antimicrobial mesh or a Surgipro mesh presoaked in either chlorhexidine (0.05%) or allicin-chlorhexidine (900 μg/mL-0.05%). Fourteen days post-implant, mesh contraction was measured and tissue specimens were harvested to evaluate bacterial adhesion to the implant surface (via sonication, S. aureus immunolabeling), host-tissue incorporation (via staining, scanning electron microscopy) and macrophage response (via RAM-11 immunolabeling).

Results

The polypropylene mesh showed improved tissue integration relative to the DualMesh Plus. Both the DualMesh Plus and the chlorhexidine-soaked polypropylene meshes exhibited high bacterial clearance, with the latter material showing lower bacterial yields. The implants from the allicin-chlorhexidine group displayed a neoformed tissue containing differently sized abscesses and living bacteria, as well as a diminished macrophage response. The allicin-chlorhexidine coated implants exhibited the highest contraction.

Conclusions

The presoaking of reticular polypropylene materials with a low concentration of chlorhexidine provides the mesh with antibacterial activity without disrupting tissue integration. Due to the similarities found with the antimicrobial DualMesh Plus material, the chlorhexidine concentration tested could be utilized as a prophylactic treatment to resist infection by prosthetic mesh during hernia repair.  相似文献   

19.
《Small Ruminant Research》2008,74(1-3):122-126
Sixty-eight female and 4 male lambs of the Chios breed born in autumn (September–October) and 48 female and 4 male kids of the Damascus breed also born in autumn (November), were used to evaluate the effect of melatonin implants (Regulin®) on the initiation of the breeding season. For each species and sex, half of the animals were either left untreated to serve as controls (C) or received ear implants (females one and males two implants) of melatonin (MEL) in May (spring). Each C and MEL group of females was kept separately and away from males for 5 weeks after implantation and then, C and MEL males were joined with the respective groups for 45 (sheep) and 35 days (goats). Animals not conceiving during the early June–July breeding season, were mated again in September (natural breeding season). The reproductive performance and the 60-day milk yield of animals giving birth during the two seasons were compared. Early in the season (mid November–December), significantly more MEL than C ewes and goats gave birth (75.5% versus 23.5%, p < 0.01; 70.8% versus 37.5%, p < 0.05, respectively). For both species, most of the other characteristics examined were significantly affected by season, but not by treatment. Females giving birth early in the season were approximately 80 days younger at parturition and recorded a lower body weight at mating than those giving birth in the natural February–March season. In the first mating period, the animals mated and conceived had similar body weights to those not mated. The natural, compared with the early June–July mating season, was associated in sheep with higher litter weight at birth (7.0 kg versus 5.8 kg, p < 0.05) and in sheep and goats with a higher number (p < 0.05) of offspring born live (1.78 versus 1.38; 2.0 versus 1.61, respectively) and weaned (1.74 versus 1.36; 1.82 versus 1.35, respectively). Total litter size at birth and 60-day milk yield after weaning, were not significantly different between the two seasons. It could be concluded that melatonin implants administered during the last month of spring in autumn-born female Chios sheep and Damascus goats, advanced the initiation of their breeding season by about 80 days when joined with young males also treated with melatonin implants. The overall reproductive performance and milk yield of animals breeding early, was satisfactory and comparable to that of animals breeding in the natural breeding season.  相似文献   

20.
Methane emissions from an alpine fen in central Switzerland   总被引:1,自引:0,他引:1  
Methane emissions and below ground methane pore water concentrations were determined in an alpine fen at 1,915?m a.s.l. in central Switzerland. The fen represented an acidic (pH 4.5–4.9), nutrient-poor to mesotrophic habitat dominated by Carex limosa, Carex rostrata, Trichophorum caespitosum and Sphagnum species. From late fall to late spring the fen was snow-covered. Throughout winter the temperatures never dropped below 0°C at 5?cm below the vegetation surface. Methane emissions in June, July, August and September were in the range of 125 (±26)–313 (±71)?mg?CH4?m?2?day?1 with a tendency to decrease along the summer season. Mean methane pore water concentrations at a depth of 20–40?cm below the vegetation surface were 526 (±32)?μM in June and in the range of 144 (±10)–233 (±7)?μM in July, August and September. At a depth of 0–20?cm the mean methane pore water concentrations dropped back to <20?μM with an almost linear decrease between 0 and 15?cm. Oxygen pore water concentrations were close to air saturation in the first few centimeters and dropped back below detection limit at a depth of 20?cm. In July and August the pore water concentrations of dissolved organic carbon (DOC) were in the range of 7.2–10.1?mg?C?l?1 at all depths. The pore water concentrations of acetate, formate and oxalate were in the range of 2.0–8.2?μM at all depths. Methanotrophic and methanogenic communities were quantified using pmoA and mcrA, respectively, as marker genes. The abundances of both communities showed a distinct peak at a depth of 10–15?cm below the vegetation surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号