首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of defence gene expression triggered by Cd toxicity in the plant’s response to Botrytis cinerea was investigated in Arabidopsis thaliana Columbia 0. Silicon (0 or 1.5 mM) and Cd (0, 1 or 10 μM) were supplied to 3-month-old solution-cultured plants. After 3 days, half of the plants of each treatment were inoculated with Botrytis. Supplied Cd concentrations were below the toxicity threshold and did not cause shoot growth inhibition or evidence of oxidative stress, while Botrytis infection severely decreased plant growth in all treatments. The expression of marker genes PR1 and BGL2 for the salicylic acid (SA) and the PDF1.2 for the jasmonic acid–ethylene (JA–ET) signalling pathways was enhanced in 10 μM Cd-treated non-infected plants. Twenty hours after inoculation, PDF1.2 expression showed a strong increase in all treatments, while enhanced PR1, BGL2, and CHIB expression was only found 7 days after infection. A great synergistic effect of Cd and Botrytis on PDF1.2 expression was found in 10 μM Cd-treated plants. Silicon decreased PR1, BGL2, and CHIB, while increasing PDF1.2 expression, which indicates its role as a modulator of the signalling pathways involved in the plant’s response to fungal infection. Botrytis growth decreased in 10 μM Cd-treated plants, which could be due to the combined effects of Cd and Botrytis activating the SA and JA–ET-mediated signalling pathways. Taken together, our results provide support for the view that Cd concentrations close to the toxicity threshold induce defence signalling pathways which potentiate the plant’s response against fungal infection.  相似文献   

2.
Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.  相似文献   

3.
Obligate biotrophs, such as the powdery mildew pathogens, deliver effectors to the host cell and obtain nutrients from the infection site. The interface between the plant host and the biotrophic pathogen thus represents a major battleground for plant-pathogen interactions. Increasing evidence shows that cellular trafficking plays an important role in plant immunity. Here, we report that Arabidopsis thaliana ENHANCED DISEASE RESISTANCE4 (EDR4) plays a negative role in resistance to powdery mildew and that the enhanced disease resistance in edr4 mutants requires salicylic acid signaling. EDR4 mainly localizes to the plasma membrane and endosomal compartments. Genetic analyses show that EDR4 and EDR1 function in the same genetic pathway. EDR1 and EDR4 accumulate at the penetration site of powdery mildew infection, and EDR4 physically interacts with EDR1, recruiting EDR1 to the fungal penetration site. In addition, EDR4 interacts with CLATHRIN HEAVY CHAIN2 (CHC2), and edr4 mutants show reduced endocytosis rates. Taken together, our data indicate that EDR4 associates with CHC2 and modulates plant immunity by regulating the relocation of EDR1 in Arabidopsis.  相似文献   

4.
为了揭示乙烯在植物与环境相互作用过程中的生物学功能,以拟南芥(Arabidopsis thaliana)的ein2-5、ein3-1、EIN3ox、EIL1ox 4种乙烯突变体与Col-0野生型为材料,对比研究它们在干旱胁迫条件下的生长和形态学变化。研究发现,干旱胁迫导致莲座叶直径、叶片面积、花序、水势等指标发生显著变化,同时不同突变体的形态适应特点呈现显著差异。这些结果表明,乙烯积极参与了植物形态塑造过程,与植物的抗旱性具有紧密相关性。  相似文献   

5.
A complex signal transduction network involving salicylic acid, jasmonic acid and ethylene underlies disease resistance in Arabidopsis. To understand this defence signalling network further, we identified mutants that expressed the marker gene PR-1::luciferase in the absence of pathogen infection. These cir mutants all display constitutive expression of a suite of defence-related genes but exhibit different disease resistance profiles to two biotrophic pathogens, Pseudomonas syringae pv. tomato and Peronospora parasitica NOCO2, and the necrotrophic pathogen Botrytis cinerea. We further characterized cir3, which displays enhanced resistance only to the necrotrophic pathogen. Cir3-mediated resistance to B. cinerea is dependent on accumulated salicylic acid and a functional EIN2 protein.  相似文献   

6.
Benzothiadiazole (BTH) is a novel chemical activator of disease resistance in tobacco, wheat and other important agricultural plants. In this report, it is shown that BTH works by activating SAR in Arabidopsis thaliana. BTH-treated plants were resistant to infection by turnip crinkle virus, Pseudomonas syringae pv ‘tomato’ DC3000 and Peronospora parasitica. Chemical treatment induced accumulation of mRNAs from the SAR-associated genes, PR-1, PR-2 and PR-5. BTH treatment induced both PR-1 mRNA accumulation and resistance against P. parasitica in the ethylene response mutants, etr1 and ein2, and in the methyl jasmonate-insensitive mutant, jar1, suggesting that BTH action is independent of these plant hormones. BTH treatment also induced both PR-1 mRNA accumulation and P. parasitica resistance in transgenic Arabidopsis plants expressing the nahG gene, suggesting that BTH action does not require salicylic acid accumulation. However, because BTH-treatment failed to induce either PR-1 mRNA accumulation or P. parasitica resistance in the non-inducible immunity mutant, nim1, it appears that BTH activates the SAR signal transduction pathway.  相似文献   

7.
Exogenous salicylic acid (SA) can be used for chemical hardening to alleviate oxidative stress in plants exposed to salinity. The treatment of 5-week-old Arabidopsis thaliana plants with increasing doses of SA alters the ascorbate (ASC) and glutathione (GSH) pools, and modulates their redox status and the activity of several antioxidant enzymes, such as ascorbate peroxidase (APX) and glutathione reductase (GR). To investigate the role of GR in the maintenance of cytoplasmic redox homeostasis after hardening by SA, wild type (WT) and gr1 mutant plants, expressing the cytoplasmic redox-sensitive green fluorescent protein (c-roGFP1), were pre-treated with 10?7 and 10?5 M SA for 2 weeks and subsequently exposed to 100 mM NaCl. The redox status of the salt-stressed WT plants became more oxidized, which was prevented by pretreatment with 10?5 M SA. The gr1 mutants showed more positive redox potential than WT plants, which could be reversed by treatment with 10?5 M SA. In mutants, the increased GSH levels may have compensated for the deleterious effect of GR deficiency and stabilized the redox potential in plants exposed to salinity. The ASC regeneration in WT plants shifted from the GSH-dependent dehydroascorbate reductase (DHAR) reaction to the NAD(P)H-dependent monodehydroascorbate reductase (MDHAR) activity during chemical hardening, which contributed to the preservation of the GSH pool in plants under salt stress. Our results suggest that the maintenance of GSH levels and redox homeostasis by SA-mediated hardening play a major role in priming and defending against salt stress.  相似文献   

8.
Mutagenized populations of Arabidopsis thaliana seedlings were screened for plants capable of root growth on inhibitory concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Four of the mutant lines recovered from this screen display a defect in root gravitropism as well as hormone resistance. The aerial portions of these plants are similar to wild-type in appearance. Genetic analysis of these four mutants demonstrated that hormone resistance segregated as a recessive trait and that all four mutations were alleles of the auxin-resistant mutation aux1 [Maher HP, Martindale SJB (1980) Biochem Genet 18: 1041-1053]. These new mutants have been designated aux1-7, 1-12, 1-15, and 1-19. The sensitivity of wild-type and aux1-7 roots to indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid, and ethylene was determined. The results of these assays show that aux1-7 plants require a 12-fold (indole-3-acetic acid) or 18-fold (2,4-dichlorophenoxyacetic acid) higher concentration of auxin than wild-type for a 50% inhibition of root growth. In addition, ethylene inhibition of root growth in aux1-7 plants is approximately 30% that of wild-type at saturating ethylene concentrations. These results indicate that aux1 plants are resistant to both auxin and ethylene. We have also determined the effect of ethylene treatment on chlorophyll loss and peroxidase activity in the leaves of aux1 and wild-type plants. No difference between mutant and wild-type plants was observed in these experiments, indicating that hormone resistance in aux1 plants may be limited to root growth. Our studies suggest that the AUX1 gene may have a specific function in the hormonal regulation of gravitropism.  相似文献   

9.
10.
11.
A gene encoding an ethylene receptor protein was isolated from pear (Pyrus pyrifolia). This gene, designated PpERS (GenBank accession No. KC517482), was 1,918 bp in length with an open reading frame encoding a protein of 638 amino acids that shared high similarity with another pear ethylene receptor protein PpERS1, and two apple ethylene receptor proteins MdERS and MdERS1. The PpERS was grouped into the ETR1 subfamily of ethylene receptor based on its conserved domain and phylogenetic status. The PpERS gene contained five exons interrupted by four introns. Quantitative RT-PCR indicated that PpERS was differentially expressed in pear tissues and predominantly expressed in petals, shoots, anthers, and 160 days after full bloom fruit. The PpERS expression was regulated during fruit development. In addition, the PpERS gene expression was regulated by salicylic acid (SA) and ethylene in fruit. The results indicated that PpERS might participate in ethylene and SA signaling transduction during pear fruit development.  相似文献   

12.
The Pseudomonas syringae effector AvrB targets multiple host proteins during infection, including the plant immune regulator RPM1-INTERACTING PROTEIN4 (RIN4) and RPM1-INDUCED PROTEIN KINASE (RIPK). In the presence of AvrB, RIPK phosphorylates RIN4 at Thr-21, Ser-160, and Thr-166, leading to activation of the immune receptor RPM1. Here, we investigated the role of RIN4 phosphorylation in susceptible Arabidopsis thaliana genotypes. Using circular dichroism spectroscopy, we show that RIN4 is a disordered protein and phosphorylation affects protein flexibility. RIN4 T21D/S160D/T166D phosphomimetic mutants exhibited enhanced disease susceptibility upon surface inoculation with P. syringae, wider stomatal apertures, and enhanced plasma membrane H+-ATPase activity. The plasma membrane H+-ATPase AHA1 is highly expressed in guard cells, and its activation can induce stomatal opening. The ripk knockout also exhibited a strong defect in pathogen-induced stomatal opening. The basal level of RIN4 Thr-166 phosphorylation decreased in response to immune perception of bacterial flagellin. RIN4 Thr166D lines exhibited reduced flagellin-triggered immune responses. Flagellin perception did not lower RIN4 Thr-166 phosphorylation in the presence of strong ectopic expression of AvrB. Taken together, these results indicate that the AvrB effector targets RIN4 in order to enhance pathogen entry on the leaf surface as well as dampen responses to conserved microbial features.  相似文献   

13.
Plant disease resistance is commonly triggered by early pathogen recognition and activation of immunity. An alternative form of resistance is mediated by recessive downy mildew resistant 1 (dmr1) alleles in Arabidopsis thaliana. Map-based cloning revealed that DMR1 encodes homoserine kinase (HSK). Six independent dmr1 mutants each carry a different amino acid substitution in the HSK protein. Amino acid analysis revealed that dmr1 mutants contain high levels of homoserine that is undetectable in wild-type plants. Surprisingly, the level of amino acids downstream in the aspartate (Asp) pathway was not reduced in dmr1 mutants. Exogenous homoserine does not directly affect pathogen growth but induces resistance when infiltrated in Arabidopsis. We provide evidence that homoserine accumulation in the chloroplast triggers a novel form of downy mildew resistance that is independent of known immune responses.  相似文献   

14.
Salt stress is one of the most important abiotic stress factors affecting plant growth and productivity in natural ecosystems. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early (within 72 h) salt stress response in leaves and roots. To this purpose, we subjected three Brassicaceae species, namely two halophytes—Cakile maritima and Thellungiella salsuginea—and a glycophyte—Arabidopsis thaliana— to short-term salt stress (400 mM NaCl). The results indicate that the halophytes showed a differential osmotic and ionic response together with an early and transient oxidative burst, which was characterized by enhanced hydrogen peroxide levels and subsequent activation of antioxidant defenses in both leaves and roots. In addition, the halophytes displayed enhanced accumulation of abscisic acid, jasmonic acid (JA) and ACC (aminocyclopropane-1-carboxylic acid, the precursor of ethylene) in leaves and roots, as compared to A. thaliana under salt stress. Moreover, the halophytes showed enhanced expression of ethylene response factor1 (ERF1), the convergence node of the JA and ethylene signaling pathways in both leaves and roots upon exposure to salt stress. In conclusion, we show that the halophytes C. maritima and T. salsuginea experience an early oxidative burst, improved antioxidant defenses and hormonal response not only in leaves but also in roots, in comparison to the glycophyte A. thaliana. This differential signaling response converging, at least in part, into increased ERF1 expression in both above- and underground tissues seems to underlay, at least in part, the enhanced tolerance of the two studied halophytes to salt stress.  相似文献   

15.

Key message

Functional markers for Sclerotinia basal stalk rot resistance in sunflower were obtained using gene-level information from the model species Arabidopsis thaliana.

Abstract

Sclerotinia stalk rot, caused by Sclerotinia sclerotiorum, is one of the most destructive diseases of sunflower (Helianthus annuus L.) worldwide. Markers for genes controlling resistance to S. sclerotiorum will enable efficient marker-assisted selection (MAS). We sequenced eight candidate genes homologous to Arabidopsis thaliana defense genes known to be associated with Sclerotinia disease resistance in a sunflower association mapping population evaluated for Sclerotinia stalk rot resistance. The total candidate gene sequence regions covered a concatenated length of 3,791 bp per individual. A total of 187 polymorphic sites were detected for all candidate gene sequences, 149 of which were single nucleotide polymorphisms (SNPs) and 38 were insertions/deletions. Eight SNPs in the coding regions led to changes in amino acid codons. Linkage disequilibrium decay throughout the candidate gene regions declined on average to an r 2 = 0.2 for genetic intervals of 120 bp, but extended up to 350 bp with r 2 = 0.1. A general linear model with modification to account for population structure was found the best fitting model for this population and was used for association mapping. Both HaCOI1-1 and HaCOI1-2 were found to be strongly associated with Sclerotinia stalk rot resistance and explained 7.4 % of phenotypic variation in this population. These SNP markers associated with Sclerotinia stalk rot resistance can potentially be applied to the selection of favorable genotypes, which will significantly improve the efficiency of MAS during the development of stalk rot resistant cultivars.  相似文献   

16.
The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resistant to bacteria carrying the avirulence genes avrRpt2 and avrB, extremely similar pathogen recognition mechanisms are apparently present in these two plant species. Isogenic bacterial strains that differ by the presence of single avirulence genes are being used to analyze plant resistance. Plant resistance genes have been identified in crosses between resistant and susceptible lines. The extensive map-based cloning tools available in Arabidopsis are being used to isolate these resistance genes. In a related project, ethylene-insensitive Arabidopsis mutants are being used to examine the role of ethylene in disease development. Ethylene apparently mediates symptom formation in susceptible plants and is not required for resistance, suggesting possible strategies for enhancement of disease tolerance in crops.  相似文献   

17.
Recent investigations showed that the model plant Arabidopsis thaliana specifically responds to herbivory-associated molecular patterns by activating a sophisticated signaling network. The lipase activity of insect oral secretions was shown to elevate oxylipin levels when applied to puncture wounds in leaves. The results also demonstrated that the oral secretions of the generalist Schistocerca gregaria contained other, probably non-proteinous, elicitors of plant defense responses which induced mitogen-activated protein kinases, calcium signaling and ethylene levels.1 This addendum presents data on the levels of additional phytohormones that are elevated after application of S. gregaria oral secretion to wounded leaves. Abscisic acid and salicylic acid levels are significantly elevated after elicitation with S. gregaria oral secretions, adding another layer of complexity to the herbivory-induced response of A. thaliana.Key words: abscisic acid, Arabidopsis, herbivory, salicylic acid, Schistocerca gregaria  相似文献   

18.
Necrotrophic fungi, being the largest class of fungal plant pathogens, pose a serious economic problem to crop production. They are the cause of heavy losses in agriculture worldwide. Understanding the process of plant infection by necrotrophic fungi, including subtle interaction networks connecting such evolutionarily distinct organisms has recently been given high research priority. Such studies are now possible mainly because of the utility of the model plant Arabidopsis thaliana. A. thaliana has a sequenced genome and thousands of mutants available, allowing investigation of virtually all aspects of plant pathogenesis. This review focuses on morphological and molecular changes in A. thaliana, which occur during response to infection by necrotrophic fungi. These responses in relation to resistance and susceptibility of the plant will be discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号